Black Hole: 2020 Physics Nobel Prize

2019.4.10: First Image of SMBH Shadow — "Not Seeing" the Black Hole

Breakthrough Prize in Fundamental Physics, Einstein Medal, Bruno Rossi Prize.....

Why are Black Holes Important ? "key" to Fundamental Physics

- Black Hole: "INVISIBLE" or "UNSEEABLE"
- Black Hole: where "GRAVITY" is strongest
- Black Hole: no escape not even light
- Black Hole: no information from inside
- Small Black Hole: "end state" of big stars (>5-10 times sun) leftover after "supernova" explosion
- Big Black Hole: Billions times the sun's mass in the nucleus of galaxies
- Black Hole Properties: high temperature? high density? depends on mass of Black Hole
- Black Hole Physics: tests General Relativity
- <u>These Experiments are on "Optics" + "Missing Information"</u>

Four Forces of Nature

Recent BLACK HOLE Research — Hear it, Feel it, (Not) See it

- Detection of Gravitational Waves (tens of cases)
- Orbital Motions at the Event Horizon (one)
- Imaging of the Event Horizon (two)
- GR Effects
- common technique: Lasers and Interferometry (optics and missing information problem)
- are these Nobel Prize winning work?

LIGO 'HEARD' GW

The LIGO experiment (another interferometer) was designed to be sensitive to the very ripples in space caused by gravitational disturbances

Like two black holes colliding...

GW Detectors: LIGO, VIRGO, KAGRA

Signatures of Gravitational Waves

More Examples

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

🖀 LIGO 🚧 VIKS 🏶 💁 Teon 🛔

Future GW Research

- Identify sources of GW and precursors
- Expanded Sensitivity and New Instruments (Einstein Telescope, Cosmic Explorer, LISA)
- Many more detections, plus SMBHBs?
- Inspiral phase and post merger phase
- Theoretical Tests for GR effects

Nobel Prizes for Gravity Wave Detection

- Taylor and Hulse (1993)
- Weiss, Thorne, and Barish (2017)

Ray Weiss working on Detectors in 70's

Back Story on "Hearing Gravity"

- 1917: Einstein publishes "On the Quantum Theory of Radiation"
- 1953: Charles Townes discovered "maser"
- 1957: Charles Townes and others discovered "laser"
- 1964: **Townes**, Badov, Prokhorov awarded Nobel Prize for Quantum Electronics, Maser, and Laser

- as freshman at MIT, I joined evening "donut" seminars
- central topic of seminar: what is the best experiment in physics
- I worked on liquid dye lasers
- Assistant Professor **Ray Weiss** worked on CMB and lasers
- 2017: Weiss, Thorne, Barish awarded Nobel Prize for Gravitational Wave detection: ~50 years of laser + interferometry research

(— I gave up laboratory physics for astronomy)

GRAVITY can be "FELT"

- The movement of stars accelerated to a fraction of the speed of light around an invisible object - showed SgrA* is likely a supermassive black hole at the center of our galaxy
- Keck telescopes and GRAVITY (VLT) have tracked them over 20 years (Andrea Ghez, Reinhard Genzel)

MPIfR Movie

Nobel Prize Physics 2020: Black Hole

- Roger Penrose (Oxford)
- Reinhard Genzel Group (MPI)
- Andrea Ghez Group (UCLA)

Center of the Galaxy (radio)

Why do astronomers need AO?

Three images of a bright star:

If image of a star is very small, your telescope will also be able to see fine details of galaxies, star clusters, ...

Adaptive Optics: New Technology

Galactic Center results from UCLA

Stars in Orbit around SgrA* 26 years of observations of S2

GRAVITY collaboration+18a, A&A 615, L10

Orbit of S2 relative to SgrA*

Working Principle of "Gravity"

- Guide Star for Adaptive Optics (atmospheric seeing)
- Fringe Tracking Star for Phase (interferometer baselines)
- VLTI for Interferometry (high angular resolution)
- 6 baselines; 3 x 10⁻³ " resolution; ~40 x 10⁻⁶ " astrometry

Motion of S2 shows GR Redshift

PPN1_{RS}(λ)

Hot SPOT in ORBIT at ISCO

Detection of orbital motions near SgrA*s ISCO

July 22nd, 2018

A&A 618, L10

Broderick & Loeb 2006, Hamaus et al. 2009

Schwarzschild Precession of Orbit

GR Orbit: PPN1_{SP}(x,y)

Prograde Precession of 12.1' upon Kepler Orbit

Red Points are data of SgrA* wrt S2

GR Orbital Fits

Increase in Precision

Precision Improved by a factor of 100 ! *because of Interferometry*

Future Research of ISCO

- Next Generation ISCO experiments
- extremely large telescope projects such as TMT, ELT, GMT, can provide better precision
- more accurate measurements of orbits
- fainter targets for orbital tests
- gas infall events detectable

Ionized Gas Gloud G2 near SgrA*

G2 orbit in Red approaching SgrA*

Gillenssen et al. 2012

Ionized Gas Gloud G2 near SgrA* Position-Velocity Diagrams


```
Br-y and He-I 2µm lines
```

Gillessen et al. 2019: SINFONI

Back Story on "Feeling Gravity"

- 1967: Charles **Townes** moves to UC Berkeley from MIT
- 1980: Townes group detect motions around Galactic Center with midinfrared spectroscopy of ionized gas
- 1980: Reinhard Genzel joins Townes group
 - Genzel moves from VLBI to infrared astronomy
 - (— I moved to Submm Interferometry)
- 1992: Genzel Starts Measuring Orbit of S2 around SgrA*
- 2002: 15.2 year Orbit defined
- 2018: Gravity Instrument measures motions near Event Horizon of Sgr A*: Lasers and Interferometry
- Nobel Prize awarded to Genzel and Ghez for discovering Black Hole: ~50 years of laser + interferometry research

(— I worked on Imaging Black Hole)

Summary

- Nobel Prize Winning Work defined by Precision
- Science typically addresses Fundamental Physics
- Science typically discovers Important Phenomena
- Discoveries typically leads to further Important Discoveries
- Discoveries typically enabled by New Technology
- Some Nobel Prize Winners stimulate more Prize Winning Work. Why?
- Some Problems have multiple Prize Winning Work. Why?

GRAVITY can be "SEEN" ? Take a Picture of Black Hole ?

- M87 black hole ~ $1 \times 10^{43} \text{ g} \sim 130 \text{ AU}$
- But M87 is very far! 53 Million Light Years
 5 x 10²⁰ km from us
- Schwarzschild Radius ~ 10 micro arcsecond Sun or Moon ~ 30 arc minutes

M87 black hole ~ 5×10^{-9} size of moon

Directly Resolving the Black Hole "because Seeing is Believing"

- Target Supermassive Black Hole
- Nearest Examples (SgrA*, M87)

(Shadow: ~5R_{sch}~40 x 10⁻⁶")

• Very Long Baseline Interferometry at Submm Wavelength

<u>Precision</u> $\sim 10^{-10}$

Problem is Size

- The problem is nearby black holes are too small, and supermassive black holes are too far. Existing telescopes cannot resolve them.
- Two cases that look biggest to us would be at the center of our galaxy... and one in M87 1000 times further away, but also 1000 times bigger.
- The expected shadow around the black hole is just 50 µas
- We Need a telescope the size of the earth:

 $\theta_{array} = \lambda/D = 1.3$ mm/11000 km ~ 20 µas

DIFFRACTION PROBLEM

Very Long Baseline Interferometer

- Simulate a Very Large Telescope (Intercontinental Distance)
- Link Telescopes by synchronizing Wave Front
- Precision at 1/20 wavelength (40 μ m), over ~10,000 km
 - distance between telescopes
 - arrival of wavefront at each telescope
 - compensate for differential atmospheric effects
 - compensate for differential electronics effects
 - compensate for individual telescope response
 - correct for sparsely sampled telescope surface
- VLBI is one of Nobel Prizes in Radio Astronomy (Ryle and Hewish 1974) — <u>IMAGE RECONSTRUCTION</u>

Gravity affects Geometry of Space

- Mass will distort space-time until even light cannot escape
- Einstein predicted the existence of black holes - though even he was not comfortable with the conclusions from his equations

Gravity/Geometry instead of Material/Dielectric to bend Light

Shadow comes from General Relativity Shadow Diameter ~ 5.2 R_{sch}

Event Horizon Telescope

Aperture Synthesis: Building up UV Coverage Visibility = Sampling · Source + Error Event Horizon Telescope

Removing "Errors" Radio Version of Adaptive Optics

before ad-hoc phasing

Blazar OJ 287; Hawaii-Spain (SMA-IRAM) baseline 420-second integration

0.05

after ad-hoc phasing

Ad-hoc phasing with ALMA corrects for atmospheric fluctuations and allows for strong detections in short time intervals on very long baselines.

Phase Referencing with ALMA

What does the Image Say?

It's Black, and Looks like a Hole

Physical Parameters?

- Photon Ring: ~42µas or ~400au, round
- Schwarzschild radius: $r_s = 2 \text{ GM} / c^2$
- Shadow Size ~5 times r_s (Event Horizon radius)
 - as expected by General Relativity
 - —— deduced mass ~ 6.5 billion solar mass
- Ring Brightness: $n_e \sim 10^4 \text{ cm}^{-3}$, $B \sim 3G$, $M_{accr} \sim 10^{-3} M_{sun} \text{ yr}^{-1}$
- Ring Asymmetry: Brighter on Bottom Side
 consistent with rotation with doppler boosting
- Tipped Disk: Perpendicular to Relativistic Jet
- Spin of Black Hole: Pointed away from Earth

Doppler Boosting of Approaching Part of Rotating Ring

Inner Rotation must lock to Black Hole Rotation

Simulation of Doppler Boosting

+1759.3 days +1759.3 days 40 -40 20 -20 y [μas] y [µas] 0 -0 -20-20-40-40 -20 -2020 -20-4040 -4040 0 0 $x [\mu as]$ $x [\mu as]$

G. Wong, B. Prather, C. Gammie (Illinois)

Observation

Current and Future Resolution of with GLT and JCMT

EHT 2017 GLT (a) Summit 220 GHz <u>3 x 3 pix (9 pix)</u> 15 x 15 pix (225 pix)

660 GHz

M31 (Andromeda) Black Hole

We will have much better resolution for black hole shadows in various galaxies.

We will have better resolution & sensitivity on M87 black hole shadow & jet.

0 GH

Another Initiative

East Asian Submm-VLBI Network

Summary

- Nobel Prize Winning Work defined by Precision
- Science typically addresses Fundamental Physics
- Science typically discovers Important Phenomena
- Discoveries typically leads to further Important Discoveries
- Discoveries typically enabled by New Technology
- Some Nobel Prize Winners stimulate more Prize Winning Work. Why?
- Some Problems have multiple Prize Winning Work. Why?
- EAO/JCMT will continue to push the EHT experiments, with new receivers, new broad band processing, and higher frequencies
- Moon Based Telescope 30 100 times better linear resolution

Summary

- Current Research depends on Angular Resolution
- Gravity Wave Research probes Coalescence Process in building larger Black Holes
- Optical/IR Interferometry probes dynamics at Event Horizon and test GR effects
- Submm Very Long Baseline Interferometry probes structures of Event Horizon and physical processes and test GR effects
- Next Generation Instruments will have more resolution and more sensitivity (time domain, energy domain, dynamics domain)
- Asia will play a leading role in this Frontier in Optics!