The relationship between SNe and their host galaxies

Yen-Chen Pan National Central University

Golden age of transient astronomy

credit: Ravi Gupta

The blind men and the elephant ...

credit: Not Two

Outline

- Core-collapse supernovae
- Superluminous supernovae
- Type la supernovae

Host galaxies of core-collapse SNe

Kelly+ 2012

Core-collapse SNe trace the star formation

Anderson+ 2015

Core-collapse SNe trace the star formation

Anderson+ 2015

Pre-explosion imaging of core-collapse SNe

Smartt+ 2009

Host galaxies of Type I Superluminous SNe

Gal-Yam+ 2012

Perley+ 2016

SLSNe-I tend to be found in galaxies of lower mass and stronger star formation

Lunnan+ 2014

SLSNe-I tend to be found in very low metallicity environments

SLSNe-I tend to be found in very low metallicity environments

Why low-metallicity is important in forming SLSNe-I?

Chen+ 2017

However, the observations of high-z SLSNe challenged the low-metallicity threshold...

Pan+ in prep.

SN la host galaxies

credit: SDSS-II Supernova Survey

SNe la are exploding white dwarfs

- White dwarfs in close binary
- Accretes matter until $\sim M_{ch}$, but the sub- M_{ch} channels are also widely discussed recently
- Progenitors still unclear
 1. single v.s. double degenerate
 2. M_{ch} v.s. sub-M_{ch} channels

SNe Ia in spirals tend to be brighter than others

Fainter SNe Ia tend to be found in more massive galaxies

Sullivan+ 2010

Fainter SNe la tend to be found in more metal-rich galaxies

gas-phase metallicity

Pan+ 2014

Theories predict SN Ia luminosity should correlate with progenitor metallicity

Other possibilities?

gas-phase metallicity

stellar metallicity

Pan+ 2014

Other possibilities?

More than one population??

gas-phase metallicity

stellar metallicity

Pan+ 2014

Recent evidence from SN la spectrum

spectrum of SN1981b, a normal type1a near max

Wavelength (Angstroms)

Recent evidence from SN la spectrum

Wavelength (Angstroms)

High-velocity SNe Ia tend to be found in the inner region of their host galaxies

High-velocity SNe Ia tend to be found in massive galaxies

Is metal-rich environment important to produce HV SNe Ia? Why?

High-velocity SNe Ia may originate from sub- M_{ch} explosions, via double detonation: Helium shell detonation triggers carbon core detonation!

Potential evolution of SN Ia populations with redshift. Implication on metallicity effect?

Pan 2020

Potential evolution of SN Ia populations with redshift. Implication on metallicity effect?

Pan 2020

Unanswered questions from SN host-galaxy studies...

- Why is metal-poor environment necessary to produce SLSNe-I? Is there a metallicity threshold for forming SLSNe-I?
- Is metallicity the underlying driver for many relations we found between SNe Ia and their host galaxies? Or something else?
- Do SN Ia populations evolve with redshift? If they are sensitive to the environmental metallicity, we should be able to see the evolution, but higher-z data is needed!