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LIGO/Virgo gravitational wave eventsMotivation

B. P. Abbott et al. , Phys. Rev. X 9, 031040 (2019)
What is the origin of black hole (BH)?



Motivation

Primordial black hole (PBH)

Formation of black hole



Ultrashort-timescale microlensing events in the OGLE data

[2] H. Niikura et al. , Phys. Rev. D 99, 083503 (2019)[1] P. Mróz et al. , Nature (London) 548, 183 (2017)

Motivation

Shaded blue region is the 95% CL allowed region of PBH abundance, obtained by assuming that 6 
ultrashort-timescale microlensing events in the OGLE data are due to PBHs



Motivation PBH is a possible candidate of dark matter 



The constraints on the fraction of PBH dark matter

[1] A. Barnacka et al. ,Phys. Rev. D 86, 043001 (2012);  A. Katz et al. , JCAP 12 (2018) 005

gravitational femtolensing of gamma-ray bursts [1] 

[2] H. Niikura et al. , Nat. Astron. 3, 524 (2019)

microlensing observation with the Subaru HSC [2] 

Motivation



Seed for PBHs: Primordial curvature perturbations

Y. Akrami et al. , 1807.06211;  D. J. Fixsen et al. ,  Astrophys. J. 473, 576 (1996);  K. Inomata et al. , PRD 94, 043527 (2016); 99, 043511 (2019)

large scales small scales

 for generating  
   a sizable amount of PBHs 
𝒫ℛ ∼ 10−2

Motivation



How to amplify the amplitude of power spectrum: Flatten potential

C. Germani and T. Prokopec, Phys. Dark Universe 18, 6 (2017);  Di and Gong, JCAP 07 (2018) 007.

Simple single-field inflation model

Slow-roll approximation

Power spectrum

Ultra-slow-roll inflation

Near-inflection point 

Motivation
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ultra-slow-roll inflation

mechanism of gravitationally enhanced friction

nonminimal derivative coupling (NDC)

Motivation

··ϕ + 3H ·ϕ + V(ϕ),ϕ = 0

How to amplify the amplitude of power spectrum: Increase friction 

flatten potential increase friction
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Basic equations

The action

Friedmann equation (FE) 

Equation of motion for inflaton (EoM) 



Slow-roll inflation

Slow-roll parameters 

Slow-roll conditions

Auxilliary condition

Approximate FE and EoM

for simplicity of calculation



How to achieve a large-amplitude curvature perturbations?

Consider the following special functional form  

and a simple monomial potential which satisfies the CMB constraint

Enhanced Power spectrum 

𝒫ℛ ≃
λ

12π2p2

ϕ
Mpl

2+p

⋅ A



Inflationary dynamics

Concrete case

Ultra-slow-roll inflation

σ = 2.6 × 10−9



The enhanced power spectrum 

observations. Therefore, the power spectrum will have a
peak of Oð10−2Þ on the scale corresponding to ϕ ¼ ϕc in
the case of ωλ ∼Oð107Þ, which could lead to the formation
of PBHs. In the next section, we will study the concrete
examples by numerical methods.

IV. NUMERICAL RESULTS

Respecting the conditions in Eq. (34), we consider the
three concrete sets of parameters shown in Table I. For
these parameter sets, we find that the effect of the non-
minimal derivative coupling has almost disappeared at the
end of inflation. The value of ϕ at the end of inflation in
these cases is the same as that in the standard slow-roll
inflation. Thus, we can get the end value ϕf ≃ 0.28Mpl by
solving ϵV ≃ 1 for these cases. We set the e-folding number
from the time when k$ exits the horizon to the end of the
inflation as N$ ¼ 60 for case 1 and 2, and as N$ ¼ 65 for
case 3. Table II gives the corresponding derived cosmo-
logical parameters and the quantities associated with the
produced PBHs for these cases. Next, taking case 1 as an
example, we study the inflationary dynamics of this model
by solving the equations numerically.
In Fig. 1(a), we plot the evolution of the number of

e-foldsN ≡ ln½aðϕfÞ=aðϕÞ&as a function of ϕ. One can see
that the inflaton almost stops rolling at around ϕ ¼ ϕc due
to the high friction, and it takes the inflaton about 20
e-folds to cross ϕc. This shows that the Universe experi-
ences a period of ultra-slow-roll inflation corresponding to
30 < N < 54. Figure 1(b) shows the evolutions of ϵ and
ϵV=A as a function of N. When N > 54, it can be seen that
ϵ is almost coincident with ϵV=A, which implies that the
approximate equations (12), (17), and (18) are valid at this
phase. Thus, after getting the inflaton value ϕ$ ¼ 4.99Mpl

corresponding to N$ ¼ 60, the scalar spectral index and the
tensor-to-scalar ratio at the pivot scale k$ can be calculated
by using Eqs. (27) and (28) to be ns ¼ 0.9666 and

r ¼ 0.0431, which are compatible with the current obser-
vational constraints in Eq. (30). Combining Eq. (33) with
PRjϕ¼ϕ$

≃ 2.10 × 10−9, we obtain λ ≃ 7.09 × 10−10. When
30 < N < 54, one can see that the slow-roll parameter ϵ
decreases by 7 orders of magnitude, which is a result of
the ultra-slow-roll inflation. Accordingly, the curvature
perturbations will be amplified by 7 orders of magnitude.
However, ϵV=A deviates from the slow-roll parameter ϵ
during this period. This is because one of the slow-roll
conditions jδϕj ≪ 1 and the additional condition in Eq. (16)
are violated when 30 < N < 54, as shown in Fig. 2, which
shows the evolutions of κ2θ;ϕH _ϕ=A and the slow-roll
parameter δϕ as a function of N. As a result, the for-
mula (26) is just a rough estimation of the enhanced power
spectrum, which is obtained on the premise that all slow-
roll conditions and the condition in Eq. (16) are valid.
In order to obtain the exact power spectrum of the

curvature perturbations, we need to resort to a numerical
solution of the Mukhanov-Sasaki equation:

u 00k þ
!
c2sk2 −

z00

z

"
u k ¼ 0; ð36Þ

which is obtained by varying the action (21) with respect to
u , where z≡ ffiffiffiffiffiffiffiffi

2Qs
p

a and u ≡ zR are the new variables,
and the prime denotes the derivative with respect to the
conformal time η≡ R

a−1dt. With these new variables, the
exact power spectrum of the curvature perturbations has
the form PRðkÞ ¼ ð2π2Þ−1k3ju k=zj2. Figure 3 compares
the power spectra of the curvature perturbations from the
approximate solution in Eq. (26) and the exact numerical
solution of the Mukhanov-Sasaki equation. It can be seen
that the formula (26) can reproduce to some extent the
qualitative behavior of the actual power spectrum.
Although the peak value of the power spectrum from
formula (26) is only slightly smaller than that of the actual
power spectrum, β is exponentially sensitive to small
variations of the power spectrum, and our calculations
show that the predicted abundance of PBHs from the power
spectrum in Eq. (26) is three orders of magnitude smaller
than that from the actual power spectrum. Therefore, it is
necessary to obtain the power spectrum of the curvature
perturbations by numerically solving the Mukhanov-Sasaki
equation.
In Fig. 4, we show the actual power spectra for the cases

of Table I and the existing observational constrains on the

TABLE II. Results for the three cases of Table I. PR
peak and fpeakPBH are the peak values of the power spectra of the curvature

perturbations and the mass spectra of PBHs, respectively. Mpeak
PBH is the PBH mass corresponding to fpeakPBH.

# ϕ$=Mpl λ ns r PR
peak Mpeak

PBH=M⊙ fpeakPBH ΩPBH=ΩDM

Case 1 4.99 7.09 × 10−10 0.9666 0.0431 0.0473 23.5 1.88 × 10−3 1.95 × 10−3

Case 2 4.83 8.23 × 10−10 0.9618 0.0497 0.0386 9.02 × 10−6 0.0452 0.044
Case 3 4.77 8.52 × 10−10 0.9607 0.0512 0.0312 8.1 × 10−13 0.977 0.972

TABLE I. The successful parameter sets for producing the
PBHs with mass aroundOð10ÞM⊙ (case 1),Oð10−5ÞM⊙ (case 2),
and Oð10−12ÞM⊙ (case 3).

# ϕc=Mpl ωλ σ

Case 1 4.63 1.33 × 107 2.6 × 10−9

Case 2 3.9 1.53 × 107 3 × 10−9

Case 3 3.3 1.978 × 107 3.4 × 10−9

PRIMORDIAL BLACK HOLES FROM INFLATION WITH … PHYS. REV. D 100, 063532 (2019)
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Can PBH explain the LIGO events, the ultrashort- timescale 
           microlensing events in OGLE data, and the most of dark matter?

OGLE data

LIGO events

Most of  dark matter

PBH

We need to investigate the fraction of PBH dark matter in different mass regions.



Basic formulas for PBH formation during radiation-dominated era

Under the assumption that the probability distribution function of perturbations is 
Gaussian, the production rate of PBHs with mass M based on the Press-Schechter 
theory is[1]

where  (  [2]) is the threshold of the density perturbations for the PBH 
formation

δc ≃ 0.4

The mass M of formed PBHs is related to the horizon mass at the horizon entry of 
the perturbations with the comoving wave number k 

where  ( )[3] is the ratio of the PBH mass to the horizon mass and indicates the 
efficiency of collapse 

γ ≃ 0.2

[1] S. Young et al. , JCAP 07 (2014) 045 [2] T. Harada et al. ,  PRD 88, 084051 (2013);  [3] B. J. Carr, APJ 201, 1 (1975) 

(g* ≃ 106.75)



Basic formulas for PBH formation during radiation-dominated era

where      is the window function, which is taken to be the Gaussian function

               represents the variance of coarse-grained density contrast for the PBH mass      [1]

     The abundance of PBHs with mass M over logarithmic mass interval is estimated as

The fraction of PBHs

[2] N. Aghanim et al. , 1807 .06209[1] S. Young et al. , JCAP 07 (2014) 045

ΩPBH

ΩDM
= ∫

dM
M

fPBH(M )

fPBH(M )



Three parameter sets for three interesting masses of PBHs

➢ stellar-mass                         PBHs: LIGO/Virgo GW events

➢ earth-mass                            PBHs: OGLE microlensing events

➢ asteroid-mass                              PBHs: most of dark matter



Scalar spectral index and the tensor-to-scalar ratio

Planck 2018 results [1]                          

[1] Y. Akrami et al. , 1807.06211

Observational constraints



Power spectra of curvature perturbations and mass spectra of PBHs

case 1 — solid line case 2 — dashed line 

case 3 — dotted line  
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Induced GW

Scalar induced gravitational waves (SIGWs)

δϕ ⇒ ℛ

RH

λ ∝a

CMB fluctuation

PBH 
ℛ ⇒ Ψ

Emit GW

ln aEnd of inflation

𝒫ℛ ∼ 10−9

𝒫ℛ ∼ 10−2

Peak of Scalar 
perturbations  

 on small 
scales

Peak theory

Secondary coupling 

PBHs
-ray background 
Femtolensing 
Microlensing  

LIHO, CMB -distortion

γ

μ

LISO/VIRGO/KAGRA 
LISA/TAIJI/TAINQIN 

BBO/DECIGO



Formalism of SIGWs

In the conformal Newtonian gauge, the perturbed FRW metric can be written as

where                      is the conformal time,     is the first-order scalar perturbation, and       is 
the second-order transverse-traceless tensor perturbation

    The equation of motion for second-order       is given by

where         is the transverse-traceless projection operator and the source term has the form [1]

[1] K. N. Ananda et al. , Phys. Rev. D 75, 123518 (2007) 

ds2 = a(η)2{ − (1 + 2Ψ)dη2 + [(1 − 2Ψ)δij +
hij

2 ]dxidxj}



Formalism of SIGWs

[1] K. Kohri and T. Terada, Phys. Rev. D 97, 123532 (2018)

In the radiation-dominated era, the density parameter spectrum of GWs          at     , which 
represents the time when          stops growing, can be evaluated as [1]

The current energy parameter and frequency of GWs are given, respectively, by  



Approximate spectra index of power spectrum

    Through analytical calculations, we found that the power spectrum can be expressed 
approximately as the power law form 

    where



Approximate power-law power spectrum: an example

Earth-mass PBHs: 

Analytic results



Density spectrum and scaling of SIGWs

∝ k3 ln2(4k2
p /3k2)

∝ knGW≃2n(2)
s ≃−2.174

 The density spectrum (left panel ) and the scaling (right one) of scalar induced GWs as a function of k 



Scaling of SIGWs

[2] Huang, et al. , 1910.09099[1] Guo, et al. , 1907.05213

In the infrared regions               , the density spectrum of SIGWs has a log-dependent slope[2]

In the ultraviolet regions               , if                  with                , the density spectrum of 
SIGWs is approximated by a power-law function of    [1] 

ΩGW(k) ∝ ( k
kp )

3

ln2( 4k2
p

3k2 )



Density parameter spectrum of SIGWs
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Conclusions

■ The enhancement of the curvature perturbations can be realized in the nonminimal 
derivative coupling model with a coupling parameter related to the inflaton field.

■ The obtained power spectrum of curvature perturbations has an enough large peak on 
the small scales and on the large scales satisfies the current observational constraints.

■ The power spectrum  in the vicinity of the peak can be well approximated by a power-
law function of comoving wave number.

■ By tuning three parameters, we can easily obtain a sharp mass spectrum of primordial 
black holes around specific mass such as                 ,                    , and                                          
which.        , which can explain the LIGO events, the ultrashort-timescale microlensing 
events in OGLE data, and the most of DM, respectively.

■ The GW signal produced by scalar metric perturbations will be detected by SKA and 
LISA. Log-dependent slope of SIGWs in the infrared regions is confirmed, while in the 
ultraviolet regions a power-law scaling is obtained.



END

THANK YOU FOR ATTENTION



The power spectrum: approximate and exact solution

Approximate solution

Numerical solution


