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- “Topological Data Analysis for the String Landscape”, A. Cole, GS, JHEP 1903, 054
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~ “Searching the Landscape of Flux Vacua with Genetic Algorithms,” A. Cole, A.
Schachner, GS, JHEP 1911, 045 (2019) [arXiv:1907.10072 [hep-th]].

- “Persistent Homology and Large Scale Structure”, M. Biagetti, A. Cole, GS, in progress.



Cosmology is marching into a big data era:

Big Data in Big Sciences

Experimental Data| 2013 2020 2030+
Storage 1PB 6PB 100-1500PB
Cores 103 70K 300+K
CPU hours 3x10° hrs|2 x 10% hrs ~ 10” hrs
Simulations 2013 2020 2030+
Storage 1-10 PB | 10-100PB |> 100PB - 1EB
Cores 0.1-1IM | 10-100M > 1G
CPU hours 200M >20G > 100G

data volume schedule

SDSS 40 TB 2000-2020

DESI 2 PB 2019-2027

LSST > 60 PB 2020-2030

Euclid >10 PB 2020-2027

WFIRST >2 PB 2023-2030
CMB-S4 | 10*xPlanck | 2020-2027(?)
SKA 4.6 EB 2019-2030(?)
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Cosmology is marching into a big data era:

Big Data in Big Sciences

Experimental Data| 2013 2020 2030+ data volume schedule
Storage 1PB 6PB 100-1500PB SDSS 40 TB 2000-2020
Cores 103 70K 300+K DESI 2 PB 2019-2027
CPU hours 3x10° hrs{2 x 10® hrs| ~ 107 hrs LSST > 60 PB 2020-2030
Simulations 2013 2020 20304 Euclid >10 PB 2020-2027
Storage 1-10 PB | 10-100PB |> 100PB - 1EB WEFIRST >2 PB 2023-2030
Cores 0.1-1M | 10-100M > 1G CMB-S4 | 10*xPlanck | 2020-2027(?)
CPU hours 200M >20G > 100G SKA 4.6 EB 2019-2030(?)

~ 200PB of raw data are collected in the first 7 years of the LHC.

In terms of sheer volume, nothing trumps the volume of
theoretical data of string vacua. A rough estimate gives:

10°%Y (Type 1IB flux vacua) 1027290 (F theory flux vacua)



Distribution of String Vacua

Flux vacua on rigid CY , x=1-y plane
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Toroidal Flux vacua with W=0
[DeWolfe, Giryavets, Kachru, Taylor]




Distribution of Large Scale Structure

Similar clustering and void features also appear in LSS:




The Shape of Data

This remarkable unity of physics suggests that we
can use similar tools to analyze the structure of
the cosmos [Cole, GS, '17]; [Biagetti, Cole, GS, ’19]

.5

.5

and the string landscape [Cole, GS, '18]



Topological Data Analysis

 When the space of data is huge, we cannot simply “visualize”
the structure of data. We need a systematic diagnostic tool.

* Topological data analysis (TDA) is a systematic tool in applied
topology to diagnose the “shape” of data.

* To compute the shape of a discrete set of data points (point
cloud) with some stability, we need a notion of persistence.

o © ©
e & & : .
Py ® Vary simplicial complexes formed
® by the point cloud with
® o® continuous parameters
& ° ° (filtration parameters)



Topological Data Analysis

 TDA Is widely used in other fields, e.g., iImaging, neuroscience, and
drug design. It is well suited for machine learning.

 From the persistent homology of the point cloud, we can test e.q.,
the effectiveness of drugs. Similarly, we can test:

S| — e
B e i

« A selector algorithm is often used due to the huge volume of data.
We applied TDA + these algorithms on cosmological datasets [Cole,
GS, "17];[Biagetti, Cole, GS, *19] and string data [Cole, GS, *18].



Topological Data Analysis



Simplicial Complexes

® In R3 simplices are vertices,
edges, triangles, and tetrahedra

® Simplicial complexes are
collections of simplices that are:

® (Closed under intersection of
simplices

® Closed under taking faces of
S I m p | |CeS Source: Wikipedia, “Simplicial Complex”

® Combinatorial representations —
easy calculations for computers



Simplicial Homology

® (iven a simplicial complex, define a boundary operator 8
that maps p-simplices to (p-1)-simplices

® \\e want to count independent p-cycles (i.e. p-loops) that

are not boundaries of higher-dimensional objects
VS.

® (Group theoretic: Zp = ker 0, , Bp — 1m 8p+1,

H,=27,/B, B,

® Betti numbers: ﬁp — ranka 51
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® (-th Betti number is number of connected components
® p-th Betti number is number of independent p-loops

® |n practice, homology calculation is a matrix reduction



Persistence

® How to choose simplicial representation of our data”

® Persistent homology: vary simplicial representation 2., of data
with some filtration parameter v such that

V]_SVQ — ZV1CZV2

® [rack each distinct feature’s lifetime (birth and death)

® [ntuition: “real” topological features persist, short-lived features
are noise

® Procedure Is stable against perturbations to data
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Visualizing Persistent Homology

ripsTorus (dimension 2)

npsiorus (dimension 0

H

® Barcodes:

® Each horizontal line represents an
Independent cycle contributing to a
particular Betti number (i.e. a connected

component, loop, void...)

® | ines start at birth and end at death

o | fuu..l.....ln-...lu:-w-lnn."-.Im.llll l..|||..lllJ|II..‘|||'In..||||[jm|j|||||,,[l,||||”H['|llmm

| 1
0 nz n4a o0k CA&

® [0 calculate Betti number, make vertical
slice and count intersections D7 DA R R0 Ry nden
v_Death
. . 1.0 - . oo
® Persistence diagrams: . > o S
0_8}3 o .:'. .
® Scatter plot, each point representing an * .
independent cycle s
0.4} :
® Calculate Betti number by counting “living” . .
cycles 02 =
““““ 0.‘4‘ | ‘0.‘6‘ | ‘0.‘8‘ | “IEO




Persistence diagrams contain more information than
Betti number curves!

VDeath
B o]
B

5; 20 —
4
3j 15

; >
2| Both PDs give the same o

1 Bettl number curve
0: 05|

o 1 2 s 4 5 g Ve

We can exploit this to improve the
data analysis of CMB [Cole, GS, ’17] &
LSS [Biagetti, Cole, GS, work in progress]

¢ 1 2 s 4 5 eVeim



Applying TDA to Cosmology



Inflation

® Period of accelerated expansion in
early universe

® Solves flatness, horizon, and
monopole problems

® Predicts nearly scale-invariant,
Gaussian curvature fluctuations

® Source anisotropies in CMB,
inhomogeneities in LSS

® A myriad of models. Taxonomy done
mostly through their observables (ns, r)




Anisotropies

® The lowest order correlation we can extract from the anisotropies is the power
spectrum

(0

® For a Gaussian theory, the power spectrum dictates all higher-pt correlations.

3
O> = (27)°Pr(k1)d(k1 + ko) A% = (;) PR oc k™

T2

R, R,

® However, the inflationary fluctuations are not perfectly Gaussian.

® The leading non-Gaussianity is the bispectrum:

(0] Ric, Ric, Ricy |0) = (27)° 63(kq + ko + k3) F(kq, ko, ks)

® Scaling and symmetries imply that F(k1, ke, k3) is fixed by an overall size ~ fnL
and its “shape” F(1, ko/k1, ka/k1).

® More powerful discriminator of inflationary models.



Non-Gaussianities
N

® [he bispectrum for single field slow-roll inflation was computed
. ItS size IS fnL ~

® [he bispectrum for general singl

parametrized by 5 parameters

enN).
e field inflation was found to be
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® There is also an “orthogonal shape” but it

“looks™ qualitatively
like the equilateral shape (challenge for machine learning?).



Non-Gaussianities

® More complicated models which involve non-standard

initial
conditions, features in potential (e.g. axion monodromy), or multiple

fields or quasi-single field can give rise to more shapes:
Non Bunch-Davis

Axion Monodromy Quasi-single field
fp,=0.02Mp> 1
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® [ ike scattering amplitudes in particle physics, non-Gaussianties can
reveal interactions governing intlation: cosmological collider.

® |n collider physics: use different strategies for different particles.



Measuring Non-Gaussianity

® Harmonic space: fits with templates of bispectrum, trispectrum,
etc. One can define a “cosine” between distributions:

cos( [, Fy) =

A A
AN 4\\\\\\\\ §
,5‘\\\\\\\\ 4{¢\\‘\\Q\\\\\ AN 0.6
AR
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Resonant shape = RS
(axion monodromy) == >
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\

0.8

® Geometrical/topological: Minkowski functionals (for CMB: area
fraction, length of boundaries, and genus of excursion sets)

® Current bound on non-Gaussianity (Planck '15):

tocal — 954 5.7 cautt — 164 70




Sublevel Filtration
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v = —1

Many distinct
components,
NoO loopPs

(Sublevel set in
black)

Sublevel Filtration

e 1n tm g
e L
-.. [ | .:- I - - |
u - .. [ | [
. -. --..:.. -....-.I.
-...r.. .-- .. E..1 [
- s Is - : :.-l--.-.
w0 " . oo
"N .- .
lm e
[ ... | - :l I-



Sublevel Filtration

v =20

Many loops, fewer
distinct components

(Sublevel set in
black)




Sublevel Filtration

v =1
One connected
component, many

loops have been filled
N

(Sublevel set in
black)




Sensitivity to Non-Gaussianity

® \We first carried out TDA for local NG and with low-resolution maps (/max~
1024) as a warmup, more in our pipeline.

® \Ve binned the persistence diagrams for different fnL, & computed the
likelihood function:

Differente (100-0) (Bu) 10 error bar
Statistic AfNL
Diflerence (100-C) (6) 2ot L‘Cgc) 674
p Sl 3, 606.1
E L Ba + B 60.6
B i
) bl S R et G 100 PD(] e 1.
g —— —s . o 0 F '.:n 0 200 PDI 37.4
VEIrn (MK 1
PDy+ PD 35.8

® More sensitive statistic than Minkowski functionals or Betti number curves,
PDs strengthens topological analysis significantly.

® N.B. Lower resolution maps used here compared to Planck’s.

® Potentially more powerful for other shapes of NG.



Applying TDA to String Vacua



TDA for String Vacua

Vdeath “Topological Complexity”

{ ' Persistence Diagrams
[Cole, GS]

0.10

0.08 G i gL, for flux vacua
' blue:0-cycles cidneiiel onrigid OY,

orange:1-cycles A lEEa | voids correspond to
SRR degeneracy of vacua

s — relationship

between topology

of distribution and

physics

0.06°

0.02

0.005 0010 0.015 0020 0025 0.030 Virth

See also [Cirafici] for the barcodes T-plane




Toy Example: |IB Flux Vacua on Rigid CY

® Superpotential W = At+B where the flux quanta:
A= —hy —1thy, B=fi+1ifs, hi,he,f1,f20€Z
subject to tadpole cancellation: Ngux = fihs — h1fo < Liax

® \acua are mapped to the fundamental domain using SL(2,2).

Vdeath

0.10

dlue:O-cycles
008 orange:1-cycles

Short-lived
but correlated
topological features
most apparent in
persistence diagrams!

0.02

0005 0010 0015 0020 0025 0.030 Vbirth 20.5 0.5



Persistence Pairing

Vdeath
0.10] blue:0-cycles
| orange:1-cycles
0.08 '
0.06*

0.005 0.010 0.015 0.020 0.025 0.030 Vbirth

[Cole,GS]



Flux Vacua on CY Hypersurface

® |n general, not possible to visualize a higher dim. data space.

® For example, flux vacua of IIB orientifold on CY hypersurface:

4
Zx? +da; — 8 xor1xow3ry =0, x; € WP 1114
1=1
has h1.1=1, h21=149 and discrete symmetry [ =Zg2 x Z> The only
[ -invariant moduli: complex structure modulus | & axio-dilaton t.
0

Projecting onto
the x=1-¢ plane

—0.04"

® [DA can more systematically diagnose the vacuum structure.



Flux Vacua on CY Hypersurface

Projecting onto
the x=1-¢ plane ..

0045, ~ . T R

-0.04:; - +:0.04 -0.047 - L, 0.04

® o identify cluster, apply density cutoff (excises cluster, results
in identifiable void)

® Does this cluster/void exist in the full four-dimensional space”?
(Might not if clustering correlates with structure in axiodilaton.)
Are there significant higher dimensional teatures”

® [hese questions can be answered with persistent homology



Flux Vacua on CY Hypersurface

® o identity cluster, apply
density cutoff (excises
cluster, results in identifiable
void)

® \We found a long-lived 1-
cycle in the full four-dim.
space and only observe
short-lived higher dimension
features (sampling noise)

olue:0-cycles
orange:1-cycles
green.2-cycles
red:3-cycles



Flux Vacua on CY Hypersurface

Vdeath

® o identity cluster, apply
density cutoff (excises
cluster, results in identifiable
void)

® \We found a long-lived 1-
cycle in the full four-dim.
space and only observe
short-lived higher dimension !
features (sampling noise)

olue:0-cycles
orange:1-cycles
green.2-cycles
red:3-cycles



Flux Vacua on CY Hypersurface

long-lived 1-cycle

® o identity cluster, apply
density cutoff (excises
cluster, results in identifiable
void)

® \We found a long-lived 1-
cycle in the full four-dim.
space and only observe
short-lived higher dimension !
features (sampling noise)

olue:0-cycles
orange:1-cycles
green.2-cycles
red:3-cycles



Flux Vacua on Symmetric T6

® Factorizable T6 = (T2)3 with equal complex structure z1=zo=z3= 7
® [wo complex moduli: complex structure modulus z and axio-dilaton .

® Number-theoretical methods were used to find distributions of vacua
with W=0 and with discrete symmetries

Generic vacua on z-plane W=0 vacua on z-plane

B Sl N

N R

® How do “cuts” like restricting to W=0 vacua (e.g., discrete R-symmetry,
motivated by ) change the topology of distribution?



Flux Vacua on Symmetric T6

® Comparing persistent homology:

dlue:0-cycles
orange:1-cycles
green.2-cycles
red:3-cycles

Generic vacua W=0 vacua

® \W=0 cut adds complexity! Long-lived higher dimensional
topological teatures differs from that for generic vacua.



Sampling in TDA

® \We can't realistically include all 10°% vacua as vertices

® Can sample the topology via the withess complex:

® [rom the entire point cloud Z, choose a landmark set L as the complex’s
vertices. Often chosen randomly or via sequential maxmin algorithm

® Let mi(2) be the distance from some z€Z to the (k+1)-nearest landmark

point. Then, given filtration parameter v, the simplex [lol1 - - . lx] is included
in the withess complex it max {d(ly, 2),d(l1, 2),...,d(lx, 2)} < v+ mg(2)

0

o /| \\
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Cherry Picking?




Purposeful Search

* |sthere a way to eftectively search for string vacua with desired
oroperties (e.g., small A, or large axion decay constant)?

 Nature has provided a solution: evolution!

population selection and crossover mutation

e Starting with a population of string vacua, we can “breed” them
(allowing for mutation as in Nature) to get a fitter population.



Searching the Landscape of Flux Vacua with
Genetic Algorithms icole, schachner, Gs]

General motivation: find vacua with phenomenologically interesting features

Idea: mimic biology by imitating evolution

V4 v< ’ (F3, H3) = (N1, N2, cnuy Nmax)




Conclusions



Conclusions

Applications of TDA to cosmological datasets and string vacua.

Persistence diagrams strengthen constraints on local non-
Gaussianities, and potentially other shapes & other observables.

Technigues we developed have been applied to analyze the structure
of string vacua. We performed initial study of simple flux vacua.

Next step is to examine the topology of string vacua point clouds
with desired features, supplementing earlier work on )

* Enhanced symmetries

e Particle physics features

Genetic Algorithms can effectively search for vacua with desired
properties (minimizing gs, Wo, /A, or maximizing faxon, ..). They can
potentially be used to test various conjectures of quantum gravity.



