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Big Data in Big Sciences

Table 1: A table taken from [1] summarizing projected computing needs for cosmology simulations and experiments.
Here PB stands for petabytes (⇠ 1015 bytes) and EB stands for exabytes (⇠ 1018 bytes). Analyzing large data sets and
constructing large theoretical simulations are ever-growing in importance.

1 Introduction
Data science is the methodical approach of processing and understanding large, complex data sets by combining the
methods of statistics, computer science, and logic with domain science to extract knowledge where simple observation
by human investigators would fail, where data sets become so overwhelming that even an army of scientists would be
no match to the onslaught of data. The methods that data science brings to bear carry commonalities across domain
science, making it a truly interdisciplinary field and a natural investment target for the faculty cluster hire initiative.

The fields of cosmology and astronomy are currently going through a data revolution, entering what is often called
the survey era. Starting with the Sloan Digital Sky Survey (SDSS) in 2000, astronomical observation has come to
rely more and more on large telescopes systematically observing large regions of the sky with ever deeper exposures
and ever increasing detail, adding spectral and temporal dimensions. These surveys produce exponentially increasing
amounts of data in the quest to understand the origin of the cosmic structure (see Table 1).

In order to answer some of the most important modern scientific questions, vast samples of astrophysical objects
must be observed with multiple experimental techniques and probes, both to reach the desired experimental sensitivi-
ties and to break degeneracies. The diagnostic power of the new massive surveys of the cosmos (described below) lies
in comparing the volume of high-dimensional data to increasingly sophisticated theoretical physics models. The
data mining complexity of this approach presents a qualitatively new challenge which can only be tackled by drawing
on synergistic advances in statistics and data science.

Some of the research activities in this interdisciplinary proposal (a collaboration of Physics, Astronomy, and
Statistics) are linked to Nobel-prize-worthy fundamental research, and through this collaboration, it is extremely
likely that the impact of the UW group in this global endeavor will be significant. Because the volume of data is
expected to be too large for traditional “human” analysis, innovative techniques relying on training machines and
novel stochastic methods must be developed.

The UW-Madison with its Center for High Throughput Computing (CHTC) is ideally positioned to successfully
solve the challenges of this large scale scientific computing problem. The CHTC leads the successful nationwide Open
Science Grid (OSG) collaboration and facilities, and has enabled building many national and international scientific
computing communities. In particular the CHTC has had a long and productive collaboration with physicists and
astronomers in the LHC experiments, IceCube, LIGO, and DES. The CHTC has also started working with NCSA on
their LSST computing needs, which as explained below is significant to the broad goals of the cluster hire.

In §2, we elaborate on the domain-specific science drivers, how data science is necessary to address them, and
explain why it is important for UW-Madison to have greater strength in this area through a cluster hire.

2 Research Description
2.1 Theoretical Cosmology
2.1.1 Science

One of the main goals of theoretical cosmology is to understand the origin of cosmic structure. This means that starting
with a hypothetical theory of initial conditions for the underlying field theory that governs the universe, we compute
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Cosmology is marching into a big data era:
data volume schedule type funding budget estimate

SDSS 40 TB 2000-2020 optical DOE/NSF $100M [4]
DESI 2 PB 2019-2027 optical DOE/NSF $60M
LSST > 60 PB 2020-2030 optical DOE/NSF $700M
Euclid >10 PB 2020-2027 optical/near-IR ESA $800M

WFIRST >2 PB 2023-2030 near-IR NASA $2B
CMB-S4 104⇥Planck 2020-2027(?) microwave DOE/NSF $1B(?)

SKA 4.6 EB 2019-2030(?) radio international $2.4B

Table 2: Sample cosmological experimental data volume expected.

of galaxies)[2]. On the other hand, the CMBR lensing (lensing of CMBR due to the gravitational potential along
the line of sight) is not as sensitive to the baryonic feedback since CMBR lensing is more sensitive to galaxy cluster
structure a long time ago before strong gravitational clumping occurred and larger length scales where the baryonic
feedback effects are less important. Hence, due to the expected CMBR lensing data in the next decade, significant
progress may be made in understanding baryonic feedback through cross-correlating CMBR lensing and weak lensing.

Finally, there is a large number of other BSM physics phenomena that remain parts of the standard repertoire
of speculations and will be continually probed by future cosmological experiments, although it is difficult to state
as confidently when a defining progress will be made on these topics. These include non-gravitational dark matter
interactions, non-Gaussian primordial quantum fluctuations, non-adiabatic initial conditions, solitonic field configura-
tions, modifications of gravity/new long range forces, and primordial magnetic fields produced by early universe phase
transitions. These will not be discussed here for brevity.

2.1.2 Expected Data and Required Computational Cosmology Effort

Cosmological measurement experiments looking at the sky are becoming larger, more complex, more precise, and span
a huge energy range (e.g. LIGO measures order 10�13eV region of gravity waves from cosmological distances while
gamma ray bursts with measured photon energies of order MeV have been used to constrain cosmology). Because
cosmological measurements rely on global fits, cross correlating numerous large data sets and removing ever more
complex systematic errors is becoming increasingly complicated.

Table 2 gives a sense of the anticipated data volume in the near future. To appreciate the magnitude of the 100
PB scale anticipated in LSST and far surpassed by SKA, note that CERN’s LHC has collected 200 PB of raw data in
its first seven years of observation. It is clear that the cosmological observational data volume is growing exponen-
tially. It is also clear from the wide range of funding agencies and budgets involved, that these efforts are commonly
recognized to be of great importance. To be able to take advantage of this wealth of data for science at UW-Madison,
it is important to have research efforts that are dedicated to data manipulation, detailed large scale simulations, and
numerical computing.

To answer the questions presented in the last subsection, usually theoretical models are fit to data. To make such a
fit, it is common that detailed, expensive theoretical simulations are summarized in a sufficiently clever and compact
form. Afterward, a large Monte Carlo parametric exploration is needed to compare the summarized theoretical predic-
tions to data. The necessity of improving large dynamic range simulations requiring control of subgrid modeling and
feedback is particularly important for the large scale structure data which represent all of the experiments on Table 2
except CMB-S4. Although CMB-S4 computing requires up to O(1021) computing operations with current methods [1]
and can be handled with the existing technology, a reduction of this number is an interesting area of research because
greater science extraction is correlated with larger number of data explorations, and a larger number of explorations in
turn is correlated with a smaller computational overhead per data exploration.

Note that one should keep in mind that it is not just the volume of data that makes the extraction of the desired
physics a novel challenge. It is also the complexity associated with the global structure of putting together many
different data sets coming from many different instruments probing a variety of physical phenomena. Reducing the
systematic errors with better target measurements (through the new hire in the astronomy department) and using
novel statistical algorithms and data reduction techniques (through the new hire in the statistics department) to extract
the maximum amount of signal from the multicomponent cosmological data set will be crucial in answering the
fundamental questions because the sought after quantities are very small compared to what can be measured without
such global fits.
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Distribution of String Vacua
Flux vacua on rigid CY


[Denef-Douglas]

where the relevant constants µ0, µ1, µ2 and µ3 are given by

µ0 = i(2π)6(a0c0 − c0a0), µ1 = i(2π)6(c0a1 − c1a0 − d1b0),

µ2 = (2π)5|d1|2, µ3 = i(2π)6(c1a1 − a1c1 + d1b1 − b1d1).
(5.4)

One finds the following expression for the Kähler metric

gxx = −µ2

µ0
ln |x|2 +

(

|µ1|2

µ2
0

− 2µ2 + µ3

µ0

)

+O(|x| ln |x|). (5.5)

Then the curvature form is

Rxx =
1

4|x|2
1

(ln |x|+ C)2
, (5.6)

where the constant C is determined to be

C = 1− |µ1|2

2µ0µ2
+

µ3

2µ2
≈ −0.738. (5.7)

In computing Kähler covariantized derivatives with respect to ψ, it is also useful to note

that

∂xKψ = −µ1

µ0
− µ2

µ0
x ln |x|2 +O(x). (5.8)

5.2. Distribution of flux vacua

-0.04 -0.02 0.02 0.04

-0.04

-0.02

0.02

0.04

Fig. 3: Each point is a vacuum on the x = 1−ψ complex plane. The monte carlo

simulation data is: number of random fluxes N = 5 × 107; random flux interval
f, h ∈ (−100, 100); complex structure ψ space region |x| < 0.04. There are 11249

vacua, but 6306 of them arise at |x| < .00001 and have been removed from the plot
(they would all cluster at the origin).
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techniques. In the approximation that the vacuum density is just the volume form on

moduli space, the surface area of the boundary will just be the surface area of the boundary

in moduli space. Taking the region R to be a sphere in moduli space of radius r, we find

A(S1)

V (S1)
∼

√
K

r

so the condition Eq. (5.2) becomes

L >
K

r2
. (5.3)

Thus, if we consider a large enough region, or the entire moduli space in order to find

the total number of vacua, the condition for the asymptotic vacuum counting formulas we

have discussed in this work to hold is L > cK with some order one coefficient. But if we

subdivide the region into subregions which do not satisfy Eq. (5.3), we will find that the

number of vacua in each subregion will show oscillations around this central scaling. In

fact, most regions will contain a smaller number of vacua (like S above), while a few should

have anomalously large numbers (like S′ above), averaging out to Eq. (5.1).

5.1 Flux vacua on rigid Calabi-Yau

As an illustration of this, consider the following toy
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Figure 6: Values of τ for rigid CY
flux vacua with Lmax = 150.

problem with K = 4, studied in [1]. The configuration

space is simply the fundamental region of the upper

half plane, parameterized by τ . The flux superpoten-

tials are taken to be

W = Aτ + B

with A = a1 + ia2 and B = b1 + ib2 each taking values

in Z+ iZ. This would be obtained if we considered flux

vacua on a rigid Calabi-Yau, with no complex structure

moduli, b3 = 2, and the periods Π1 = 1 and Π2 = i.

The tadpole condition NηN/2 ≤ L becomes

ImA∗B ≤ L (5.4)

One then has

DW = 0 ↔ τ̄ = −B

A
. (5.5)

Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound Eq. (5.4), taking one representative of each orbit

of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,

0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from

Eq. (5.5) and map it into the fundamental region by an SL(2, Z) transformation. The

resulting plot for L = 150 is shown in figure 6.

– 38 –

Flux vacua of an orientifold of 

CY hypersurface in WP41,1,1,1,4

[Giryavets, Kachru, Tripathy]

x=1-ψ plane
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Toroidal Flux vacua with W=0

[DeWolfe, Giryavets, Kachru, Taylor]
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Fig. 5: Distribution of W = 0 vacua in complex structure fundamental domain
for L = 2000 for large values of Im τ .

are given by

max(Im τ) ∼
√

L

2
at Re τ = 0,±0.5 . (4.57)

The next peaks have height Im τ ∼
√

L/4 at Re τ = ±0.25. We also confirm numerically

that the distribution of vacua in the complex structure fundamental domain is in accord

with 1/(Im τ)2.
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Fig. 6: Void structure of distribution of W = 0 vacua in dilaton fundamental
domain for L = 600.
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Distribution of Large Scale Structure

Similar clustering and void features also appear in LSS:
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of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound Eq. (5.4), taking one representative of each orbit

of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,

0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from

Eq. (5.5) and map it into the fundamental region by an SL(2, Z) transformation. The

resulting plot for L = 150 is shown in figure 6.
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This remarkable unity of physics suggests that we  
can use similar tools to analyze the structure of  

the cosmos [Cole, GS, ’17]; [Biagetti, Cole, GS, ’19] 
and the string landscape [Cole, GS, ’18]

The Shape of Data



Topological Data Analysis
• When the space of data is huge, we cannot simply “visualize” 

the structure of data. We need a systematic diagnostic tool. 
• Topological data analysis (TDA) is a systematic tool in applied 

topology to diagnose the “shape” of data.  
• To compute the shape of a discrete set of data points (point 

cloud) with some stability, we need a notion of persistence.

Vary simplicial complexes formed 
by the point cloud with  
continuous parameters  
(filtration parameters)



Topological Data Analysis
• TDA is widely used in other fields, e.g., imaging, neuroscience, and 

drug design. It is well suited for machine learning.  
• From the persistent homology of the point cloud, we can test e.g., 

the effectiveness of drugs. Similarly, we can test: 

• A selector algorithm is often used due to the huge volume of data. 
We applied TDA + these algorithms on cosmological datasets [Cole, 
GS, ’17];[Biagetti, Cole, GS, ’19] and string data [Cole, GS, ’18].

String 
Compactifications

Desired  
Phenomenological 

 Features

Early Universe  
Theories

Pattern of LSS/CMB



Topological Data Analysis



• In      , simplices are vertices, 
edges, triangles, and tetrahedra 

• Simplicial complexes are 
collections of simplices that are: 

• Closed under intersection of 
simplices 

• Closed under taking faces of 
simplices 

• Combinatorial representations — 
easy calculations for computers

Source: Wikipedia, “Simplicial Complex”

R3

Simplicial Complexes



• Given a simplicial complex, define a boundary operator        
that maps  p-simplices to (p-1)-simplices 

• We want to count independent p-cycles (i.e. p-loops) that 
are not boundaries of higher-dimensional objects 

• Group theoretic:                              ,                                   ,     

• Betti numbers: 

• 0-th Betti number is number of connected components 

• p-th Betti number is number of independent p-loops 

• In practice, homology calculation is a matrix reduction

@p

vs.

Hp ⌘ Zp/Bp

�p ⌘ rankHp

�0 = 1 �0 = 1

�1 = 1 �1 = 0

Zp = ker @p Bp = im @p+1

Simplicial Homology



• How to choose simplicial representation of our data? 

• Persistent homology: vary simplicial representation       of data 
with some filtration parameter       such that 

• Track each distinct feature’s lifetime (birth and death) 

• Intuition: “real” topological features persist, short-lived features 
are noise 

• Procedure is stable against perturbations to data [Cohen-Steiner 2005]

⌫1  ⌫2 =) ⌃⌫1 ✓ ⌃⌫2

⌫
⌃⌫

Persistence

































• Barcodes: 

• Each horizontal line represents an 
independent cycle contributing to a 
particular Betti number (i.e. a connected 
component, loop, void…) 

• Lines start at birth and end at death 

• To calculate Betti number, make vertical 
slice and count intersections 

• Persistence diagrams: 

• Scatter plot, each point representing an 
independent cycle 

• Calculate Betti number by counting “living” 
cycles

0.2 0.4 0.6 0.8 1.0
ν_Birth

0.2
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0.8

1.0

ν_Death

Visualizing Persistent Homology



Persistence diagrams contain more information than 
Betti number curves! 

We can exploit this to improve the 
data analysis of CMB [Cole, GS, ’17]  & 
LSS [Biagetti, Cole, GS, work in progress]

Both PDs give the same  
Betti number curve



Applying TDA to Cosmology



• Period of accelerated expansion in 
early universe 

• Solves flatness, horizon, and 
monopole problems 

• Predicts nearly scale-invariant, 
Gaussian curvature fluctuations 

• Source anisotropies in CMB, 
inhomogeneities in LSS 

• A myriad of models. Taxonomy done 
mostly through their observables (ns, r)

Inflation
[Starobinsky];[Guth];[Linde];[Albrecht, Steinhardt];…



• The lowest order correlation we can extract from the anisotropies is the power 
spectrum 

• For a Gaussian theory, the power spectrum dictates all higher-pt correlations. 

• However, the inflationary fluctuations are not perfectly Gaussian. 

• The leading non-Gaussianity is the bispectrum: 

• Scaling and symmetries imply that F(k1, k2, k3) is fixed by an overall size ~ fNL 
and its ‘’shape” F(1, k2/k1, k3/k1). 

• More powerful discriminator of inflationary models.
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• The bispectrum for single field slow-roll inflation was computed 
in [Maldacena, ’02];[Acquaviva et al, ‘02]; its size is fNL ~ O(ε,η): 

• The bispectrum for general single field inflation was found to be 
parametrized by 5 parameters [Chen, Huang, Kachru, GS, ‘06]: 

• There is also an “orthogonal shape” but it “looks” qualitatively 
like the equilateral shape (challenge for machine learning?).

Non-Gaussianities

Local shape
f local

NL

⇠ O(✏, ⌘, s)

Equilateral shape
fequil
NL ⇠ O(

1

c2s
� 1,�)

k3

k2

k3

k2



Non-Gaussianities

• More complicated models which involve non-standard initial 
conditions, features in potential (e.g. axion monodromy), or multiple 
fields or quasi-single field can give rise to more shapes: 

• Like scattering amplitudes in particle physics, non-Gaussianties can 
reveal interactions governing inflation: cosmological collider.

• In collider physics: use different strategies for different particles.

Notice that in this range fφ∗ ≪ 1 is always satisfied.
The shape of resonant non-Gaussianity for axion monodromy inflation is shown in Fig-

ure 2 for b = 10−2, fφ∗ = 2× 10−2, and fixed k1 = k∗ = 0.002Mpc−1. We chose this value of
f because both the leading contribution and the subleading contribution in fφ∗ are clearly
visible. Notice that as the value of k1 changes, the phase of the oscillation changes.
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Figure 2: This plot shows the shape G(k1, k2, k3)/(k1k2k3) of resonant non-Gaussianity for
the linear potential of axion monodromy inflation with b = 10−2, fφ∗ = 2 × 10−2 and fixed
k1 = k∗ = 0.002Mpc−1. We use the notation x2 = k2/k1 and x3 = k3/k1. The triangle
inequality implies x2+x3 ≤ 1 and the quantity is symmetric under interchange of x2 and x3

so that we show in the plot only the region 1/2 ≤ x2 ≤ 1.

We find that our analytic result for f res agrees with the values obtained by numerical
integration in [13] at the per cent level.15

3.2. Consistency relation

As pointed out in [11] (see also [12]), in the limit in which one of the momenta, say, k3
is much less than the other two, which are then roughly equal, k3 ≪ k1 ≈ k2 = k, the
three-point function is related to the two-point function by a consistency relation

lim
k3→0

⟨R(k1, t)R(k2, t)R(k3, t)⟩ ≃ −|R(o)
k3
|2

1

H(tk)

d

dtk
⟨R(k1, t)R(k2, t)⟩ , (3.31)

15For the comparison, notice that [13] uses a momentum dependent quantity f̃NL. In the equilateral limit,

they extract their quantity fA = −f̃ (eq)
NL . This quantity is related to our f res according to fA = 10f res/9.
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Figure 5: The shape of |Ãc|/k1k2k3

τc = −M/Hk. Since the integrand is regulated at τ = −1/Kcs due to its rapid oscillation,
if τc < −1/Kcs, the cutoff M has no effects to our calculation. That is, for K ≫ kH/Mcs,
we will see the behaviors shown in Fig. 4 & 5 near the folded triangle limit. But within
K < kH/Mcs, the cutoff takes effect first, the divergence behavior will be replaced. The
details depend on the nature of the cutoff, e.g. a naive sharp cutoff will introduce oscillatory
behavior.

7 Conclusion

The forthcoming suite of cosmological experiments will nail down with ever greater precision
the parameters of the inflationary model that yielded our homogeneous, isotropic universe.
Some measurements, like the value of the spectral index and the nature of its running,
are guaranteed to occur. Others, like a detection of primordial gravitational waves, are
not necessarily expected to occur on theoretical grounds (since models with very small r
seem more natural as quantum field theories), but would be tremendously exciting and
instructive if they do. The discovery of significant non-Gaussian scalar fluctuations falls into
this latter category. While the simplest models of inflation do not produce this phenomenon,
its discovery would tell us something qualitatively important about the inflationary epoch,
and experiments sensitive enough to measure |fNL| ≥ 5 will be launched in the next two
years. For this reason, we feel it is worthwhile to parametrize the reasonable possibilities,
and understand the qualitative physics of the models that produce them.

In this paper, we have taken some steps in this direction for generic single-field models.
There are several clear directions for further work:

• It would be nice to derive the same formulae governing non-Gaussianities as arising di-
rectly from symmetry principles. Perhaps these would be encapsulated most neatly in a
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Figure 7: Shapes of bispectra with intermediate forms. We plot (p1p2p3)2F with ν =

0, 0.3, 0.5, 1. The plot is normalized such that (p1p2p3)2F = 1 for p1 = p2 = p3 = 1.

To plot, we define the function F as

⟨ζ3⟩ ≡ F (p1, p2, p3)P
2
ζ (2π)

7δ3(
∑

i

pi) . (4.14)

To illustrate the shape of a scale-invariant bispectrum, we conventionally normalize the

amplitude F by multiplying a factor of (p1p2p3)2. This makes it dimensionless and scale-

independent.

From Fig. 7, we can see that when ν is small, the shape looks more like an equilateral

shape. When ν gets larger, the shape looks more like a local shape. In Sec. 5, we will study

the analytical properties and explain the underlying physics of these shapes.

Finally, we would like to parameterize the magnitude of the non-Gaussianities in terms

of an estimator f int
NL. According to the convention in the bispectrum literature, we define the

number f int
NL by matching with the f local

NL in the local shape ansatz in the equilateral limit. In
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Non Bunch-Davis Axion Monodromy Quasi-single field



• Harmonic space: fits with templates of bispectrum, trispectrum, 
etc. One can define a “cosine” between distributions: 

• Some shapes are harder to find, e.g.,  

• Geometrical/topological: Minkowski functionals (for CMB: area 
fraction, length of boundaries, and genus of excursion sets) 

• Current bound on non-Gaussianity (Planck ’15):

Measuring Non-Gaussianity

cos(F1, F2) =
F1 · F2

(F1 · F1)
1/2

(F2 · F2)
1/2

Notice that in this range fφ∗ ≪ 1 is always satisfied.
The shape of resonant non-Gaussianity for axion monodromy inflation is shown in Fig-

ure 2 for b = 10−2, fφ∗ = 2× 10−2, and fixed k1 = k∗ = 0.002Mpc−1. We chose this value of
f because both the leading contribution and the subleading contribution in fφ∗ are clearly
visible. Notice that as the value of k1 changes, the phase of the oscillation changes.

fΦ" #0.02MP
2

0.5

0.6

0.7

0.8
0.9

1

x2

0.2
0.4

0.6
0.8

1 x3

$2

0

2

4

6

!%!k" , k" %x2 , k" %x3 "
k"
3 %x2 %x3

$

0

Figure 2: This plot shows the shape G(k1, k2, k3)/(k1k2k3) of resonant non-Gaussianity for
the linear potential of axion monodromy inflation with b = 10−2, fφ∗ = 2 × 10−2 and fixed
k1 = k∗ = 0.002Mpc−1. We use the notation x2 = k2/k1 and x3 = k3/k1. The triangle
inequality implies x2+x3 ≤ 1 and the quantity is symmetric under interchange of x2 and x3

so that we show in the plot only the region 1/2 ≤ x2 ≤ 1.

We find that our analytic result for f res agrees with the values obtained by numerical
integration in [13] at the per cent level.15

3.2. Consistency relation

As pointed out in [11] (see also [12]), in the limit in which one of the momenta, say, k3
is much less than the other two, which are then roughly equal, k3 ≪ k1 ≈ k2 = k, the
three-point function is related to the two-point function by a consistency relation

lim
k3→0

⟨R(k1, t)R(k2, t)R(k3, t)⟩ ≃ −|R(o)
k3
|2

1

H(tk)

d

dtk
⟨R(k1, t)R(k2, t)⟩ , (3.31)

15For the comparison, notice that [13] uses a momentum dependent quantity f̃NL. In the equilateral limit,

they extract their quantity fA = −f̃ (eq)
NL . This quantity is related to our f res according to fA = 10f res/9.
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Resonant shape 
(axion monodromy)

f local

NL

= 2.5± 5.7 fequil
NL = �16± 70



(Hotter points are 
deeper red)

Sublevel Filtration



⌫ = �1

Many distinct 
components, 

no loops

(Sublevel set in 
black)

Sublevel Filtration



⌫ = 0

Many loops, fewer 
distinct components

(Sublevel set in 
black)

Sublevel Filtration



⌫ = 1
One connected 

component, many 
loops have been filled 

in

(Sublevel set in 
black)

Sublevel Filtration



Sensitivity to Non-Gaussianity
• We first carried out TDA for local NG and with low-resolution maps (l max~ 

1024) as a warmup, more in our pipeline.  

• We binned the persistence diagrams for different fNL, & computed the 
likelihood function: 

• More sensitive statistic than Minkowski functionals or Betti number curves, 
PDs strengthens topological analysis significantly. 

• N.B. Lower resolution maps used here compared to Planck’s. 

• Potentially more powerful for other shapes of NG.

1σ error bar



Applying TDA to String Vacua



techniques. In the approximation that the vacuum density is just the volume form on

moduli space, the surface area of the boundary will just be the surface area of the boundary

in moduli space. Taking the region R to be a sphere in moduli space of radius r, we find

A(S1)

V (S1)
∼

√
K

r

so the condition Eq. (5.2) becomes

L >
K

r2
. (5.3)

Thus, if we consider a large enough region, or the entire moduli space in order to find

the total number of vacua, the condition for the asymptotic vacuum counting formulas we

have discussed in this work to hold is L > cK with some order one coefficient. But if we

subdivide the region into subregions which do not satisfy Eq. (5.3), we will find that the

number of vacua in each subregion will show oscillations around this central scaling. In

fact, most regions will contain a smaller number of vacua (like S above), while a few should

have anomalously large numbers (like S′ above), averaging out to Eq. (5.1).

5.1 Flux vacua on rigid Calabi-Yau

As an illustration of this, consider the following toy

-0.5 0.5
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3

Figure 6: Values of τ for rigid CY
flux vacua with Lmax = 150.

problem with K = 4, studied in [1]. The configuration

space is simply the fundamental region of the upper

half plane, parameterized by τ . The flux superpoten-

tials are taken to be

W = Aτ + B

with A = a1 + ia2 and B = b1 + ib2 each taking values

in Z+ iZ. This would be obtained if we considered flux

vacua on a rigid Calabi-Yau, with no complex structure

moduli, b3 = 2, and the periods Π1 = 1 and Π2 = i.

The tadpole condition NηN/2 ≤ L becomes

ImA∗B ≤ L (5.4)

One then has

DW = 0 ↔ τ̄ = −B

A
. (5.5)

Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound Eq. (5.4), taking one representative of each orbit

of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,

0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from

Eq. (5.5) and map it into the fundamental region by an SL(2, Z) transformation. The

resulting plot for L = 150 is shown in figure 6.
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𝜏-plane

e.g., for flux vacua 
on rigid CY, 

voids correspond to  
degeneracy of vacua 

— relationship 
between topology 
of distribution and 

physics

TDA for String Vacua
“Topological Complexity”

See also [Cirafici]  for the barcodes  

Persistence Diagrams 
[Cole, GS] 

blue:0-cycles 
orange:1-cycles

Persistence Diagrams 
[Cole, GS] 



Toy Example: IIB Flux Vacua on Rigid CY

• Superpotential W = A𝜏+B where the flux quanta:  

subject to tadpole cancellation: 

• Vacua are mapped to the fundamental domain using SL(2,Z).

A = �h1 � ih2, B = f1 + if2, h1, h2, f1, f2 2 Z
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techniques. In the approximation that the vacuum density is just the volume form on

moduli space, the surface area of the boundary will just be the surface area of the boundary

in moduli space. Taking the region R to be a sphere in moduli space of radius r, we find

A(S1)

V (S1)
∼

√
K

r

so the condition Eq. (5.2) becomes

L >
K

r2
. (5.3)

Thus, if we consider a large enough region, or the entire moduli space in order to find

the total number of vacua, the condition for the asymptotic vacuum counting formulas we

have discussed in this work to hold is L > cK with some order one coefficient. But if we

subdivide the region into subregions which do not satisfy Eq. (5.3), we will find that the

number of vacua in each subregion will show oscillations around this central scaling. In

fact, most regions will contain a smaller number of vacua (like S above), while a few should

have anomalously large numbers (like S′ above), averaging out to Eq. (5.1).

5.1 Flux vacua on rigid Calabi-Yau

As an illustration of this, consider the following toy
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problem with K = 4, studied in [1]. The configuration

space is simply the fundamental region of the upper

half plane, parameterized by τ . The flux superpoten-

tials are taken to be

W = Aτ + B

with A = a1 + ia2 and B = b1 + ib2 each taking values

in Z+ iZ. This would be obtained if we considered flux

vacua on a rigid Calabi-Yau, with no complex structure

moduli, b3 = 2, and the periods Π1 = 1 and Π2 = i.

The tadpole condition NηN/2 ≤ L becomes

ImA∗B ≤ L (5.4)

One then has

DW = 0 ↔ τ̄ = −B

A
. (5.5)

Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound Eq. (5.4), taking one representative of each orbit

of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,

0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from

Eq. (5.5) and map it into the fundamental region by an SL(2, Z) transformation. The

resulting plot for L = 150 is shown in figure 6.
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[Cole,GS]

blue:0-cycles 
orange:1-cycles



Flux Vacua on CY Hypersurface
• In general, not possible to visualize a higher dim. data space. 

• For example, flux vacua of IIB orientifold on CY hypersurface: 

has h1,1 =1, h2,1=149 and discrete symmetry Γ=Z82 × Z2. The only 
Γ-invariant moduli: complex structure modulus ψ & axio-dilaton 𝜏. 

• TDA can more systematically diagnose the vacuum structure.
[Cole,GS]

The Calabi-Yau manifolds of interest, Mk for k = 5, 6, 8, 10, are defined by the equa-

tions

k = 5 :
4∑

i=0

x5
i − 5ψ x0x1x2x3x4 = 0 , xi ∈ P4 ,

k = 6 :
4∑

i=1

x6
i + 2x3

0 − 6ψ x0x1x2x3x4 = 0 , xi ∈ WP4
1,1,1,1,2 ,

k = 8 :
4∑

i=1

x8
i + 4x2

0 − 8ψ x0x1x2x3x4 = 0 , xi ∈ WP4
1,1,1,1,4 ,

k = 10 :
4∑

i=2

x10
i + 2x5

1 + 5x2
0 − 10ψ x0x1x2x3x4 = 0 , xi ∈ WP4

1,1,1,2,5 .

(5.1)

The geometry of the Mk spaces was studied in [59] following the seminal work of Candelas

et al. on the quintic [60] (see also [61,62] for discussions of the one-parameter models),

and we follow their notation. The mirrors Wk of these spaces have one complex structure

modulus, parametrized by ψ in (5.1), and are obtained by dividing out by the appropriate

discrete group Gk [63]. In the spirit of [9], however, we work with the Mk rather than

their mirrors. As long as we turn on only Gk-invariant fluxes, those complex structure

moduli that are not invariant under Gk can be set to zero, as they are in (5.1), leaving us

with effectively one-parameter models. This simplification is analogous to that made in

the previous section to reduce to a model with a single τ modulus.

The moduli space of ψ for each Mk is quite similar: all four have (mirror) Landau-

Ginzburg points, conifold points, and large-complex structure points at ψ = 0, 1,∞ re-

spectively. For these one-parameter models, we focus on physics at and near the Landau-

Ginzburg (LG) point ψ = 0, which is a fixed point of the modular group. Because we

work with a perturbative expansion of the periods around this point, while we can solve

perturbatively for solutions of the vacuum equations DW = 0, we cannot identify points

in the moduli space with W = 0 or with discrete symmetries except precisely at the LG

point, since these characteristics cannot be definitively identified in perturbation theory.

The period vector of each of the Mk at ψ = 0 is associated with a different field

extension over Q, and this algebraic structure is vital to understanding the kinds of vacua

that exist (or fail to exist) there. For each of the models, we ask whether vacua exist

at the LG point, whether W = 0 vacua exist there, under what circumstances discrete

symmetries arise in the low-energy theory at this point, and how many vacua with each of
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where the relevant constants µ0, µ1, µ2 and µ3 are given by

µ0 = i(2π)6(a0c0 − c0a0), µ1 = i(2π)6(c0a1 − c1a0 − d1b0),

µ2 = (2π)5|d1|2, µ3 = i(2π)6(c1a1 − a1c1 + d1b1 − b1d1).
(5.4)

One finds the following expression for the Kähler metric

gxx = −µ2

µ0
ln |x|2 +

(

|µ1|2

µ2
0

− 2µ2 + µ3

µ0

)

+O(|x| ln |x|). (5.5)

Then the curvature form is

Rxx =
1

4|x|2
1

(ln |x|+ C)2
, (5.6)

where the constant C is determined to be

C = 1− |µ1|2

2µ0µ2
+

µ3

2µ2
≈ −0.738. (5.7)

In computing Kähler covariantized derivatives with respect to ψ, it is also useful to note

that

∂xKψ = −µ1

µ0
− µ2

µ0
x ln |x|2 +O(x). (5.8)

5.2. Distribution of flux vacua
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Fig. 3: Each point is a vacuum on the x = 1−ψ complex plane. The monte carlo

simulation data is: number of random fluxes N = 5 × 107; random flux interval
f, h ∈ (−100, 100); complex structure ψ space region |x| < 0.04. There are 11249

vacua, but 6306 of them arise at |x| < .00001 and have been removed from the plot
(they would all cluster at the origin).
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Projecting onto  
the x=1-ψ plane

[Giryavets, Kachru, Tripathy]



Flux Vacua on CY Hypersurface

• To identify cluster, apply density cutoff (excises cluster, results 
in identifiable void) 

• Does this cluster/void exist in the full four-dimensional space? 
(Might not if clustering correlates with structure in axiodilaton.) 
Are there significant higher dimensional features? 

• These questions can be answered with persistent homology

[Cole,GS]
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Projecting onto  
the x=1-ψ plane
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Flux Vacua on CY Hypersurface

• To identify cluster, apply 
density cutoff (excises 
cluster, results in identifiable 
void) 

• We found a long-lived 1-
cycle in the full four-dim. 
space and only observe 
short-lived higher dimension 
features (sampling noise)

[Cole,GS]
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Flux Vacua on CY Hypersurface

• To identify cluster, apply 
density cutoff (excises 
cluster, results in identifiable 
void) 

• We found a long-lived 1-
cycle in the full four-dim. 
space and only observe 
short-lived higher dimension 
features (sampling noise)

[Cole,GS]

long-lived 1-cycle

blue:0-cycles 
orange:1-cycles 
green:2-cycles 
red:3-cycles



Flux Vacua on Symmetric T6

• Factorizable T6 = (T2)3 with equal complex structure z1 = z2 = z3 = z 

• Two complex moduli: complex structure modulus z and axio-dilaton 𝜏. 

• Number-theoretical methods were used to find distributions of vacua 
with W=0 and with discrete symmetries [DeWolfe, Giryavets, Kachru,Taylor]

• How do “cuts” like restricting to W=0 vacua (e.g., discrete R-symmetry, 
motivated by [Nelson, Seiberg]) change the topology of distribution?

of vacua on the symmetric torus. We used a Monte Carlo algorithm to generate a large

number of solutions, gauge fixing SL(2, Z)φ with conditions on the fluxes, and gauge fixing

SL(2, Z)τ by only keeping solutions with τ in the fundamental domain. Our numerical

results are compatible with the results of [26], both for the total number of vacua and the

distribution on moduli space. We found the L4 scaling for L in the range 20 ≤ L ≤ 100,

where we have Nvacua ∼ CL4 with C ≈ 0.13. We have also confirmed numerically that

when Nflux > 20, the distribution of vacua is compatible with 1/(Im τ)2. For values of

L < 20, the number of vacua shrinks more rapidly than L4 as L decreases, indicating that

below this value the number of vacua is suppressed due to lattice effects. At small values

of L the existing vacua are dominated by small values of Im τ , indicating that the region

of moduli space with large Im τ is near a void in the lattice structure.

-0.4 -0.2 0.2 0.4
1

2

3

4

5

Fig. 2: Distribution of generic torus vacua in complex structure fundamental

domain for L = 18.

We have graphed the distribution of vacua in the τ fundamental region for small values

of Nflux ≤ 18 in fig. 2. As in the rigid CY model, for which a graph appears in [26], there

is quite a bit of structure to the points. In particular, something like the void found in

[26] appears in the vicinity of the imaginary axis. This phenomenon may be related to

the large number of vacua which arise along this axis, including those described in §4.2,

many of which have a discrete symmetry under τ → −τ , as we discuss in §4.3.4. This void

structure may also be related to the fact that the imaginary axis is one place admitting
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Fig. 3: Log of the exact number of W = 0 vacua with Nflux < L as a function of

log L fit by predicted curve log (0.143) + 2 log L up to L = 5000.
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Fig. 4: Distribution of W = 0 vacua in complex structure fundamental domain
for L = 5000 for small values of Im τ .

In fig. 4 and fig. 5 we illustrate the distribution of W = 0 vacua in the complex

structure fundamental domain for small and large values of Im τ respectively. The curves

visible in fig. 4 can be interpreted as the loci of values of τ associated to vacua with a linear

constraint imposed on (l, m, n); using (4.47), one sees that constraints not involving n will

fix x = Re τ , while for n = C1m+C2l one relates x to y = Im τ as y2 +x2 = −2C1x+C2.

The large scale peak structure in fig. 5 can be deduced from (4.47) with the additional

modular group fixing constraint (4.48). In particular, the heights of the maximal peaks
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Flux Vacua on Symmetric T6

• Comparing persistent homology: 

• W=0 cut adds complexity! Long-lived higher dimensional 
topological features differs from that for generic vacua.

Generic vacua W=0 vacua

blue:0-cycles 
orange:1-cycles 
green:2-cycles 
red:3-cycles



• We can’t realistically include all           vacua as vertices 

• Can sample the topology via the witness complex: 
• From the entire point cloud Z, choose a landmark set L as the complex’s 

vertices. Often chosen randomly or via sequential maxmin algorithm 

• Let             be the distance from some z∈Z to the (k+1)-nearest landmark 
point. Then, given filtration parameter    , the simplex                 is included 
in the witness complex if

10500

[l0l1 . . . lk]

mk(z)
⌫

Sampling in TDA

max {d(l0, z), d(l1, z), . . . , d(lk, z)}  ⌫ +mk(z)





≠



≠

dada 
≠mama 
≠data



Cherry Picking?



Purposeful Search

population selection and crossover mutation

• Is there a way to effectively search for string vacua with desired 
properties (e.g., small Λ, or large axion decay constant)? 

• Nature has provided a solution: evolution!

• Starting with a population of string vacua, we can “breed” them 
(allowing for mutation as in Nature) to get a fitter population. 



Searching the Landscape of Flux Vacua with 
Genetic Algorithms

General motivation: find vacua with phenomenologically interesting features

Idea: mimic biology by imitating evolution 

[Cole, Schachner, GS]

(F3, H3) = (N1, N2, …, Nmax)  



Conclusions



Conclusions
• Applications of TDA to cosmological datasets and string vacua. 
• Persistence diagrams strengthen constraints on local non-

Gaussianities, and potentially other shapes & other observables. 
• Techniques we developed have been applied to analyze the structure 

of string vacua. We performed initial study of simple flux vacua. 
• Next step is to examine the topology of string vacua point clouds 

with desired features, supplementing earlier work on statistics: 
• Enhanced symmetries [DeWolfe, Giryavets, Kachru, Taylor], … 
• Particle physics features [Marchesano, GS, Wang];[Dienes];[Gmeiner, 

Blumenhagen, Honecker, Lust, Weigand], [Douglas, Taylor], …

• Genetic Algorithms can effectively search for vacua with desired 
properties (minimizing gs, W0, Λ, or maximizing faxion, ..). They can 
potentially be used to test various conjectures of quantum gravity.


