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Massive neutrinos

I Neutrino flavour oscillation

I Mass ordering

I Small neutrino masses Normal Inverted
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Leptonic mixing

Charged current interactions in mass basis

−LCC =
g
√

2
(ēL, ¯̀L, ḡL)W`U
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ª®®¬W+` + h.c.

UMNSP ≡ U = U†eUa

Most popular parameterization given by the Particle Data Group

UPDG =
©­­«

c12c13 c13s12 e−iXs13

−c23s12 − c12s23eiXs13 c12c23 − s12s23eiXs13 c13s23

s12s23 − c12c23eiXs13 −c12s23 − c23s12eiXs13 c13c23

ª®®¬ ,
sij = sin \ij, cij = cos \ij
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First proof of neutrino oscillation:
“sin2 2\ > 0.82 and 5 × 10−4 < Δm2 < 6 × 10−3 eV2”
Super-Kamiokande [hep-ex/9807003]
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−LCC =
g
√

2
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Non-zero \13 mixing angle confirmed:
Double Chooz, 1112.6353; Daya Bay,
1203.1669; RENO, 1204.0626
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A non-zero \13 opens the possibility of
measuring the CP-violating X phase



Flavor symmetries

High energy discrete flavor
symmetry −→ residual symmetries of the

leptonic mass matrices.

I Residual symmetries of the leptonic mass matrices can be
related to mixing pa�erns in diagonalization matrices.

I Mixing pa�erns can be classified according to their leading order
predictions for the solar mixing angle.

I Note: Usually the charged leptons basis is taken diagonal.



Flavor symmetries

Let’s start with a neutrino mixing matrix with vanishing reactor angle
at leading order

Ua =
©­­«

1 0 0
0 ca23 sa23
0 −sa23 ca23

ª®®¬
©­­«

ca12 sa12 0
−sa12 ca12 0

0 0 1

ª®®¬ =
©­­«

ca12 sa12 0
−sa12c

a
23 ca12c23 sa23

sa12s
a
23 −ca12s23 ca23

ª®®¬
where

saij = sin \aij , caij = cos \aij



Flavor symmetries: Leading order classification

Tribimaximal (TBM): (sa12)2 = 1/3

Ua =

©­­­­­«
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√
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Flavor symmetries: Leading order classification

Bimaximal (BM): (sa12)2 = 1/2

Ua =

©­­­«
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Flavor symmetries: Leading order classification

Hexagonal (HEX): (sa12)2 = 1/4

Ua =

©­­­«
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− 1
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a
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√
3

2 c23 sa23
1
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a
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√
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Flavor symmetries: Leading order classification

Golden ratio 1 (GR1): (sa12)2 = (2 + q)−1 = (5 −
√

5)/10 ≈ (0.53)2

Ua ≈
©­­«

0.85 sa12 0
−0.53ca23 0.85c23 sa23
0.53sa23 −0.85s23 ca23

ª®®¬



Flavor symmetries: Leading order classification

Golder ratio 2 (GR2): (sa12)2 = (3 − q)/4 = (5 −
√

5)/8 ≈ (0.59)2

Ua =
©­­«

0.64 sa12 0
−0.59ca23 0.64c23 sa23
0.59sa23 −0.64s23 ca23

ª®®¬



Flavor symmetries: Leading order classification

Classification according to the leading order value of the solar angle:

Mixing pa�ern BM TBM HEX GR1 GR2
(sa12)2 1/2 1/3 1/4 (5 −

√
5)/10 (5 −

√
5)/8

(!) A non-zero reactor angle \13 is incompatible with these scenarios
at leading order,

I However, su�icient corrections to the mixing angle predictions, e.g.,
from perturbations to the charged lepton mixing matrix Ue, can
correct this incompatibility.



Flavor symmetries: Corrections from Ue

Consider, for example, the non-diagonal Ue

Ue = Ue
12 =

©­­«
ce12 se12e

−iXe12 0
−se12e

iXe12 ce12 0
0 0 1

ª®®¬
where seij = sin \eij , c

e
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0 0 1
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Sum rules

First we require that
UMNSP = UPDG

then we require that all the ratios��(UPDG)lj
����(UPDG)l′j′
�� = ��(UMNSP )lj

����(UMNSP )l′j′
��

hold simultaneously, all the 9!/(7!2!) = 36



Sum rules
The ratios result in relations of the form:

|ta12 | =
|s12s23 − c12c23s13eiX |
|c12s23 + c23s12s13eiX |

, sa12t
a
23 =
|s12s23 − c12c23s13eiX |

|c13c23 |
, (te12)2 = cs2

23t
2
13

ca12t
a
23 =
|c12s23 + c23s12s13eiX |

|c13c23 |
, (se12)2(ta23)2 = sc2

23t
2
13, (ce12)2(ta23)2 = t2

23,

· · ·
That can be put into equations like

2 cos X = (ca12)2
[
cs13ct12t23(t2

12 − (ta12)2) + ct23s13t12(ct2
12 − (ta12)2)

]
,

2 cos X = ct23
[
ct12s13 − c13cs12ct13sc12(sa12)2(ta23)2

]
+ cs13t12t23,

2 cos X = ct23
[
c13cs12ct13sc12(ca12)2(ta23)2 − s13t12

]
− cs13ct12t23,

· · ·

2 cos(Xe12) = te12

(
c2

12ct
2
13cs

a
12s

a
23sc

a
12t

a
23 − ca23t

a
12

)
− cte12ct

a
12sc

a
23,

2 cos(Xe12) = ca23ct
a
12t

e
12 − ct2

13s
2
12cs

a
12t

e
12s

a
23sc

a
12t

a
23 + cte12sc

a
23t

a
12,

· · ·



Sum rules

In the end, everything is reduced to one relation that can be expressed in
terms of \a23, \a12, \12 and \13

cos X =
1

s′12s13 |ca23 |
√
(sa23)2 − s2

13

[
((sa23)2 − s2

13)s2
12 + s2

13c
2
12(ca23)2

− (sa12)2(sa23)2c2
13

]
.

Additionally, we have the well-known relations

s2
13 = |Ue3 |2 = (se12)2(sa23)2

s2
23 =

|U`3 |2

1 − |Ue3 |2
=
(ce12)2(sa23)2

1 − (se12)2(sa23)2

s2
12 =

|Ue2 |2
1 − |Ue3 |2

=
(ca12)2(ca23)2(se12)2 + (ce12)2(sa12)2 − 2ce12c

a
12c

a
23 cos(Xe12)se12s

a
12

1 − (se12)2(sa23)2
.



Sum rules

Simpler notation:

a ≡
(
se12

)2
, b ≡

(
sa23

)2
, c ≡ cos

(
Xe12

)
, z0 ≡ (sa12)2

x ≡ s2
13 = ab

y ≡ s2
23 =
(1 − a)b
1 − ab

z ≡ s2
12 = z0 −

2c
√
a(1 − a) (1 − b)z0(1 − z0)

1 − ab + a(1 − b) (1 − 2z0)
1 − ab .

Moreover, given the small error bars for the reactor angle

s2
13 = 0.02241+0.00066

−0.00065 (NuFIT 4.1, 2019)

we will fix the value of s2
13 = x = x0 = 0.02241. We will assume normal

ordering.



Probability densities

If we assume all the model parameter distributions to be completely
independent, the probability distributions can be related as

Px (x) =
∫

dℓxPa(a)Pb (b),

Py (y) =
∫

dℓyPa(a)Pb (b),

Pz (z) =
∫

dAzPa(a)Pb (b)Pc (c),

where dℓx and dℓy are line elements in a-b space for fixed x and y ,
respectively. For Pz (z), dAz is an area element in a-b-c space for a fixed
value of z .



Probability densities

However, considering correlations between the model parameters
due to x , y and z we have to consider conditional probability distributions

Px (x) =
∫

dℓxPa |b (a)Pb (b) =
∫

dℓxPa(a)Pb |a(b),

Py (y) =
∫

dℓyPa |b (a)Pb (b) =
∫

dℓyPa(a)Pb |a(b)

Pz (z) =
∫

dAzPa |b (a)Pb |c (b)Pc (c),

where PU |V (U) represents the probability distribution of some variable U
for a given value of some other variable V.



Probability densities

To obtain the distributions Py (y) and Pz (z) we take the one dimensional
j2 projections available in NuFIT’s webpage (www.nu-fit.org), then
assume

Py (y) = Ny exp(−j2(y)/2)

Pz (z) = Nz exp(−j2(z)/2)

where Ny ,z is some normalization factor. Since we fixed the value of
x = x0 = 0.02241, we consider

Px (x) = X(x − x0)

for completely independent a and b this means they also follow a
X-function probability distribution. However, that is not the case
when we consider correlations.



Probability densities

Why model parameter distributions?
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The possible y-z combinations that
are possible within the allowed ranges
of b and c depend on the mixing
pa�ern.

We need to go back to the model parameters and make sure that we are
still working inside the limits of our model.



Probability densities

From the integral of Py (y) we can find Pa(a) and Pb (b) when we consider
correlations.

Pb (b) =
1

1 − x0
Py

(
b − x0

1 − x0

)
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Probability densities

The distribution of c is more involved. It has to be guessed (dashed
lines) or marginalized from a two-dimensional distribution obtained
from a two-dimensional j2 (solid colored lines)
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Predictions for cos X

Once all the probability distributions for the model parameters have been
determined we can integrate them for fixed values of cos X to find the
predictions and their distribution
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Summary

I Massive neutrinos are a clear indication of beyond SM physics.
I We need tools to discriminate between the enormous amount of

theoretical scenarios.
I In this work we developed a process to go from mixing matrices to

CP-violating phase predictions, taking into account as many details
as possible.

I This level of detail eases the identification of weak points in
theoretical models.

I In particular, the BM pa�ern has problems to reproduce current
measured mixing angles.

I It would be interesting to see how these results change with new data.
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