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We are used to discussing classical space time in terms of the
metric G0 () which is not gauge invariant (coordinate dependent)

What is gauge invariant is the physical observables, deflection
angle, impulse ...

If space-time is emergent, we should be able to derive these
observables without ever introducing

9 ()

Certainly this can be done for gravity as perturbation around flat
spacetime, what about classical solutions, i.e Black Holes ?




BLACK HOLES <=> QUANTUM PARTICLES

No hair theorem tells us: Outside the event horizon, a BH is
characterized by (M, Q, ISl), with no reference to the origin of its
makeup

At large distances, BHs are
particles !?
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But: For sufficient large distances aren't all objects essentially
point particles ? No!
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Tidal Love numbers: vanishing for BHs but not Neutron stars (Naturalness problem?)




BLACK HOLES <=> QUANTUM PARTICLES

* No hair theorem tells us: Outside the event horizon, a BH is
characterized by (M, Q, ISl), with no reference to the origin of its
makeup

« But: For sufficient large distances aren't all objects essentially
point particles ? No!

If we consider spinning objects
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The worldline action are distinctly different for distinct stellar objects!




BLACK HOLES <=> QUANTUM PARTICLES

The Wilson coefficients are derived from the linearized metric.
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from which one reads off the stress-tensor sourcing the linearized metric
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The worldline operators linear in R is then matched to the stress tensor
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Smoking gun!
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C#=1 for Kerr BHs !

* What are the physical principles that selects these coefficients ?

* How do they encode/differentiate distinct black hole (like) solutions?

* Let us approach this in a purely on-shell fashion: the operators yield the
scattering amplitude of a massive object coupled to a graviton
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Start with the worldliness operator End with a scattering amplitude

q : .
These are objects with quantum
number (M, s) and sources the non-

trivial background via interactions!
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GENERAL MASSIVE AMPLITUDES

N. Arkani-Hamed, Tzu-Chen Huang, Y-t H 1709.04891

Consider an amplitude for massive states. Since it is a scalar function that carries the quantum
number of the physical state (Little group)
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| =1,2 are doublets of SU(2) Little group.

We introduce spinor-helicity formalism
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This naturally introduces the requisite SU(2) indices
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Let us consider three-point amplitude with one massless and two equal mass
3
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GENERAL MASSIVE AMPLITUDES

We need two vectors to span the SL(2,C) space: we have the massless spinor of the massless
leg

Det(pa"" = pad = \Z)\& (Ua, Va) = (A3,a; Eaﬁ)‘g)
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There is another variable that carrv the opposite helicitv weiaht of the massless leg
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This allows us to define the x factor which carries positive helicity

M" {a1ag--ags, }, {B182-Bas, } Three point amplitude is constructed from (x, A, € )

We have a parameterization of
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THE SIMPLEST MASSIVE-AMPLITUDE

Let’s consider simplest possible amplitude is given by a pure x term

M3(q™,15,2%) = zme*®, Mz(q™%, 1%, 2%) = z° me*

Or after putting back the external polarization vectors:
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Note that beyond spin-2 there are no Lagrangian for consistent fundamental
higher-spin particles. Could it be strings ?

The couplings of leading trajectory spin-s state coupled to massless field
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maximally complicated !




THE SIMPLEST MASSIVE-AMPLITUDE

To see what kind of interaction this describes, we compare this with amplitude
from the 1-particle EFT

m;xz Corm? ,(21)-0 (_:c(22tI) <q1>)a . (@M)b,

Our minimal coupling is given as:

They are not in the same basis:
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we find that n(n _ 1) n(n —_ 1)(7;,2 — 5n + 10)

Csn =1+ TP 3952 It matches to C=1 in the
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Isolated higher-spin elementary particles do exists, they are Kerr black holes




THE X-AMPLITUDE

Minimal coupling in the large s limit is identical to Kerr BH:
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Observables: using minimal coupling at tree-level
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we find that
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which matches to the classical GR result Justin Vines 1709.06016
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* What is minimal coupling telling us about Kerr?




THE ON-SHELL VIEW POINT @®ouUBLE cory)

First, we see that gravitational minimally coupling, is simply a double copy of electric-
magnetic minimal coupling !
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This imply that black holes are a double copy of some electrically charged object. Indeed
such a relation was shown for the Kerr-Schild form of the metric:

Monteiro, O'Connell, White 1410.0239

uv = gg,, + kuk,d(r), AM® = c?ktg(r)| Schwarzschild sol -> Coloumb potential
e Kerr sol -> rotating charged disk with radius

in the one body EFT approach in terms of computations involving 2. A tantalising example
would be the fact for charged black holes, one also has g = 2 [42], and one can conjecture
that x gives the correct Wilson coefficient for the electricmagnetic couplings. This would be
the simplest example of double copy for classical objects.




THE ON-SHELL VIEW POINT (EXPONENTIALS)

Minimal coupling is really a reflection that the spin is completely “intrinsic”
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The only spin-pieces is contained in the external wave functions (the As). Indeed
2' is related to 2 by a boost
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Each spinor bracket can be written in terms of spin operators
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Thus the spinor brackets becomes operators on the Hilbert-space with

(22)° = (1+ ﬁ—)s
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Taking S-> infinity

The spin factor exponentiates!!




THE ON-SHELL VIEW POINT (COMPLEX SHIFT)

For minimal coupling the spin-dependence exponentiates in the large spin-limit
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Note that g is the transverse momenta, and hence after Fourier transform,
relates to impact parameter. So the difference between s=0 and spinning case

This implies a complex-shift relating Kerr to Schwarzschild in the context of
physical observables. For exp the impulse imparted on a probe @ 2
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Once again in the q”*2=0 limit the amplitude factorizes to our minimal coupling!
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THE ON-SHELL VIEW POINT (COMPLEX SHIFT)

For minimal coupling the spin-dependence exponentiates in the large spin-limit
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Note that g is the transverse momenta, and hence after Fourier transform,
relates to impact parameter. So the difference between s=0 and spinning case

This implies a complex-shift relating Kerr to Schwarzschild in the context of
physical observables. For exp the impulse imparted on a probe @ 2
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Once again in the q”*2=0 limit the amplitude factorizes to our minimal coupling!

M, (1,251,2) |p20 = €€z (x11'e—q.a+) | The Kerr sol is a complex
) ’ g2—0 —

B 2—‘2 o9 i1 . 3
q 22 11 shift of the Schwarzschild sol!




KERR FROM SCHWARZSCHILD

Convert mll' — ew x22' — e—'u,v
?

L9’ Ty’
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where w is the rapidity, we find that the EM impulse is

A
Apy = i—61262 d*q 6(q-u1)6(q- Uz)e_zq'bg_Q

((cosh w+ sinh w)e? "%+ (cosh w— sinh w)e~¢'?)

For gravity we just square x!

L
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after Fourier transforming g we have
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where b, = H(b T ia’): in agreement with Justin Vines 1709.06016
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THE JANIS NEWMAN SHIFT

This is simply the mysterious Janis Newman shift!

Once again consider BH solutions in the Kerr-Schild form

Guv = 921/ + kukv¢(r)a

T —— ————

Schwarzschild :  ¢gcn(7) = 7‘70,

ToT

Kerr : r)=
¢Kerr( ) 72 + a2 cos? 93 7

The Kerr solution is simply a complex shift of Schwaz-Schild!  Newman, Janis
J. Math. Phys. 6, 915 (1965)

To
¢SCh(r)|r—>r+ia cos@ — ? b

This is precisely the shift
induced by the exponentiation!




THE ON-SHELL VIEW POINT (DUALITIES)

Is there other ways of “exponentiating” minimal coupling ?

r — :Ef(qﬂ, Sﬂapﬂ)

T — —

Since P°q=p-*$=0| already have the spin-shift £ — zem |the only other

L —

possibility is a complex phase shift! | z — ze?

L

A complex charge describes the coupling of a dyon.

By double copy, there must be a corresponding gravitation solution:

72 _y 220120

As we will see, the double copy of a dyon is Taub-NUT!
The double copy of S-duality! Taub-NUT spacetime must be related to
Schwarzschild by some kind of electric-magnetic duality transformation!




DYON FROM PHASE ROTATIONS

To see that the phase rotation indeed leads to a dyon, once again we consider

the impulse mymae, e (xl >
—€

Ty . mimsniM T

T5° g M)

I I
leading to o A T i
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This can be compared with the Lorentz force. The field strength can be
determined from the electric and magnetic fields

dp" . . Q . . " o Q
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From this one can read off the relativistic form of the field strength

=LY . —1q- 1 v ~ v
F™ = ib(q - up)e™™ ”?(Qq[“uzl—Qe" SOTRY

The impulse then follows
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dr




TAUB-NUT FROM DYON

The dyon impulse C "
Apf = —iqelz | /d4<7 6(q - U1)5(Q'U2)e_zq'nbgq

((cosh w++ sinh w)e_w-l—(cosh w— sinh w)e“")
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Double copying then yields

N _ _igmp " iy :
i [d*q (G- u1)0(q-us)e = (Q¢ cosh 2w—iG ¢ sinh 2w)

Indeed this matches with the impulse computed in Taub-Nut space-time at 1 PM
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At 1 PM, we are considering the linear approximation,
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TAUB-NUT FROM DYON

The dyon impulse .
¢e|C s _ o\ igm @
apt = =% (a5 ws(a- w)e o™

((cosh w++ sinh w)e_w +(cosh w— sinh w)e“e )

o gh
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Double copy then yields

Gk
i/d4(j 0(q-u1)d(q - ’uz)«e""l'm’i]j—2 (Q¢ cosh 2w—iG ¢ sinh 2w)

Indeed this matches with the impulse computed in Taub-Nut space-time at 1 PM

At 1 PM, we are considering the linear approximation,
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TAUB-NUT FROM SCHWARZSCHILD

A complex charge describes the coupling of a dyon.

z — el

By double copy, there must be a corresponding gravitation solution:

$2 — .’1326220

T— —

The double copy of a dyon is Taub-Nut!  Also shown directly for the classical solution
A. Luna, R. Monteiro, D. O'Connell, C. D. White

The phase transformation indicates that

1. The Taub-Nut metric is again some complex shift acting on the Schwarzschild
metric

2. The shift has an interpretation as a electric-magnetic duality transformation.
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TAUB-NUT FROM E&M DUALITY

not long after Janis and Newman'’s realization of Kerr/Schwarzschild
correspondence, Talbot generalized the complex shift to obtain Taub-NUT
The shift has an interpretation as a electric-magnetic duality transformation.

u=1u —iacosf + 2iflogsinb, r =71 +iacosf — il m =m' — il.
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The complex shift introduced by Talbot can be generated by a BMS super
translation:

The expansion of asymptotically flat metrics around future null infinity

2
ds? = —du? — 2dudr + 2r27zgdzd7, Y2z = 1+ 22)2
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The metric is invariant under BMS translation

1 dQZ’}’zgf(Z, Z)mp.

T(f) =
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is a symmetry of the
metric
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TAUB-NUT FROM E&M DUALITY

2. The shift has an interpretation as a electric-magnetic duality transformation.

u=1u —iacosf + 2iflogsinb, r =71 +iacosf — il m =m' — il.

T— —

The complex shift introduced by Talbot can be generated by a BMS super
translation:

The expansion of asymptotically flat metrics around future null infinity

2
2 3.2 2. s L
ds® = : du® — 2dudr + 2r“vy,z;dzdz Y2z 1+ 22)2
mpg

+— du? + rC,,d2* + rCs:dz* — 2U,dudz — 2Usdudz — -
U, = _%chzz

+ooo,
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Uri Kol, Massimo Porrati 1907.00990

The Taub-NUT metric is

1+ |z|*

Coz = tly,z 5
VA
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This is generated from an imaginary super translation

21+ _, ,
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TAUB-NUT FROM E&M DUALITY

2. The shift has an interpretation as a electric-magnetic duality transformation.

This is generated from an imaginary super translation

2(1 + |2[?)
2|

= 2i/logsin 6. - (2iflogsin 0)0, — (i£)0, — 4726 cot8df + O (r~2)

T ——

f(z,2) = —2iflog

Let us see what happens to the charges. It was shown by Kol and Porrati that
the super translation charge is accompanied by a dual charge

()

ME) = T6rG /s

d*ze(z,2)y** (DC;, — D2C3;)

Under the super translation, the T charge deforms as

1 2 A 2Z 2 2 =
T() 5 T+ gog |, 227 DI, 2),

: : 14
using D2D2f = —ity2, | we find  T(e) = T(e) —i— . d%z v,:¢(z, Z).
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T

or Thus we see that the imaginary shift rotates the
T'(e) = T(e) — iMnut(e) super-translation charge with the dual
supertranslation




CHARGED BH

Schwarzschild, Kerr, (Kerr) Taub-Nut at 1 PM is described by minimal coupling. When
there are other massless d.o.f. are they given by minimal coupling? Kerr-Newman!

In the Kerr-Schild form the Kerr-Newman solution is given by

Guv = Nuv + fkp,ku
Gr? 0
f: T4+a222[2MT_Q ]

» (1 rT+ay ry—ar z)

"r2 L a2’ P2 42l p
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A Qr_
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Let’s consider the world line action again, where the couplings are derived from the stress

nsor
tenso 1

<p2|Tuu(Q) |p1> = m [ZPpPuFl (q2) + (Q;zQV - nyuqz)F2(q2)]

Charge induces new photon contributions

entering at one loop,
but still 1 PM (we have GQA2)




CHARGED BH

Schwarzschild, Kerr, (Kerr) Taub-Nut at 1 PM is described by minimal coupling. When
there are other massless d.o.f. are they given by minimal coupling? Kerr-Newman!

In the Kerr-Schild form the Kerr-Newman solution is given by

Guv = Nuv + fkp,ku
Gr? 5
f: T4+a222[2MT_Q ]

» (1 rT+ay ry-—ax z)

"2 L2’ p2 427 p

3
A Qr_

Hopd o g22 H

T

Let’s consider the world line action again, where the couplings are derived from the stress

nsor
tenso 1

<p2|Tuu(Q) |p1> = m [ZPpPuFl (q2) + (Q;zQV - nyuqz)F2(q2)]

What are these new couplings
kinematically?




CHARGED BH

For the photon coupling, lets work out the EFT coupled to the back ground
gauge field

AP = (’u," cos(a - 9) — G”Vaﬁuuaaag Sm(f‘." 38)) }%

From which we can deduce the curent given by
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_ Q/dsi [u“ (=(a-9)°) — e"*Py,a,0 (~(a-0)°) 6% [z — Ty1(3)]

(2n)! T (2n +1)!

i

n=>0

this should appear in the interaction term of the EFT as

S‘int — —/d4$A#ju
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leading to
Sint = —/d4w Q /ds 64 T — Ty1(S)]

— p (_(a‘ ' 8)2)n
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CHARGED BH

We again convert this to a three-point amplitude for charged spin-s particle
interacting with a photon:

Sint = —/d4:1: Q /ds 54 [z — zw1(s)]

(—(a-0) e (a-0)
X Z [ (2n)! ) + e *“Puy,a,04 C (on+ 1)) A,(z)

converting to on-shell variables:

we find that

28
M:;(q“, 1°,2°) =xm (H) |

m
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M7 =€ (2)[

N— Again match with minimal coupling!




CHARGED BH

This corresponds to the stress tensor form factor with photons

(ye, |Tuu(Q) 1ve,)

T— —

The tree-level form factor for a stress tensor and two massless states can be
identified as the three-point amplitude of massive spin-2 state and two massless
states, it is again unique once the the helicities are fixed

(T (g)|271) ~ A ATAP AT [12]°

corresponds to Tuw = FuoF° y— 3 FP° Fpo

Thus all the vertices that determine the 1 PM photon contribution is uniquely
determined

= (e, | Tpw (@) |ye,) ® A3(1°£143) ® A3(£3£22°)




CHARGED BH

Applying unitarity methods we can extract the triangle coefficient from

= (e, | Ty (@) |ve,) ® A3(1°4143) ® Az(£3£22°)

classicall!

We are only interested in the triangle coefficients since

d*k 1 o I4g —q? , | M2
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We find:

2 Q27T'2
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4] {Flu#uu + m—fP(#Eu) + F3(quqy — Muwq®) + QE,LEU} = €408, P%q"S°
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Translated to non-relativistic frame

Q*r? Matches with the form factor
Too = ——5 gJo(@ % q)

_iQ*n? . i iQAm? ;[ Ji(@ x q)
T()z— 9 q[Jl(aX(j)] = 2 q(axé’) (—Z'X(T
Jo(a@ x d)] Q*m? ¢'q’ — ¢°6; [J1

2,2 ‘ ,
Tiszz ‘1[(6”@31(6:)(q’y][(axé‘)2 2

obtained from

T,u,u = Fqua v %nuquona

minimal coupling captures
all spin effects!




SUMMARY

We have seen that properties of BH solutions can now be cleanly cast into on-shell elements

providing convenient basis to manifest the simplicity of BHs.
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SUMMARY

We have seen that in terms of on-shell basis, properties of BH solutions are cleanly captured
they are kinematically minimal

The simplicity in the on-shell basis reflect hidden relations for the classical solutions:

double copy, complex shifts, duality transformations

These relations are in fact non-perturbative !

More to understand at 2 PM, what selects the BH Compton amplitude ? (Causality ?)

What is special about string amplitudes, and the difference between leading and subleading

trajectories

Can similar analysis applied to quasi-normal modes ?




