# Non-Standard Neutrino Interactions: From Oscillations to Colliders Tao Han PITT PACC, University of Pittsburgh NCTS Annual Theory Meeting NTHU, Dec. 12, 2019



### **NEUTRINOS: CORNERSTONE OF THE SM**

At low energies, Fermi's contact interactions:

$$-\mathcal{L}_{eff}^{cc} = \frac{G_F}{\sqrt{2}} J_W^{\mu} J_{W\mu}^{\dagger} , \quad -\mathcal{L}_{eff}^{NC} = \frac{G_F}{\sqrt{2}} J_Z^{\mu} J_Z^{\mu} , \quad \frac{G_F}{\sqrt{2}} \simeq \frac{g^2}{8M_W^2} = \frac{1}{2\nu^2}$$
$$J_W^{\mu\dagger} = (\bar{\nu}_e \bar{\nu}_\mu \bar{\nu}_\tau) \gamma^{\mu} (1 - \gamma^5) V_\ell \begin{pmatrix} e^-\\ \mu^-\\ \tau^- \end{pmatrix} + (\bar{u} \ \bar{c} \ \bar{t}) \gamma^{\mu} (1 - \gamma^5) V_q \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$
$$J_Z^{\mu} = \sum_m \left[ \bar{u}_{mL} \gamma^{\mu} u_{mL} - \bar{d}_{mL} \gamma^{\mu} d_{mL} + \bar{\nu}_{mL} \gamma^{\mu} \nu_{mL} - \bar{e}_{mL} \gamma^{\mu} e_{mL} \right]$$

At and above the EW scale:  $\mathcal{L} = -\frac{g}{2\sqrt{2}} \left( J_W^{\mu} W_{\mu}^{-} + J_W^{\mu\dagger} W_{\mu}^{+} \right) - \frac{g}{2\cos\theta_W} J_Z^{\mu} Z_{\mu}$ 

### **NEUTRINOS: CORNERSTONE OF THE SM**

At low energies, Fermi's contact interactions:

$$-\mathcal{L}_{eff}^{cc} = \frac{G_F}{\sqrt{2}} J_W^{\mu} J_{W\mu}^{\dagger} , \quad -\mathcal{L}_{eff}^{NC} = \frac{G_F}{\sqrt{2}} J_Z^{\mu} J_Z^{\mu} , \quad \frac{G_F}{\sqrt{2}} \simeq \frac{g^2}{8M_W^2} = \frac{1}{2\nu^2}$$

$$J_W^{\mu\dagger} = (\bar{\nu}_e \bar{\nu}_\mu \bar{\nu}_\tau) \gamma^{\mu} (1 - \gamma^5) V_\ell \begin{pmatrix} e^-\\ \mu^-\\ \tau^- \end{pmatrix} + (\bar{u} \ \bar{c} \ \bar{t}) \gamma^{\mu} (1 - \gamma^5) V_q \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

$$J_Z^{\mu} = \sum_m \left[ \bar{u}_{mL} \gamma^{\mu} u_{mL} - \bar{d}_{mL} \gamma^{\mu} d_{mL} + \bar{\nu}_{mL} \gamma^{\mu} \nu_{mL} - \bar{e}_{mL} \gamma^{\mu} e_{mL} \right]$$

At and above the EW scale:  $\mathcal{L} = -\frac{g}{2\sqrt{2}} \left( J_W^{\mu} W_{\mu}^{-} + J_W^{\mu\dagger} W_{\mu}^{+} \right) - \frac{g}{2\cos\theta_W} J_Z^{\mu} Z_{\mu}$ 

**NEUTRINOS REMAIN MOST ELUSIVE** Fundamental questions remain:

- Are neutrinos Dirac/Majorana? Leptogenesis?
- The three-mass ordering?

•

- How large is the CP phase?
  - The next discovery (maybe)
- Are there "Non-Standard Interactions" (NSI)?

NSI at the COHERENT & LHC #
 NSI with a "Leptonic Scalar" \*

# arXiv:1910.03272 [hep-ph] JHEP 1911 (2019), 028 TH, Hongkai Liu, Jiajun Liao, Danny Marfatia

\* arXiv:1910.01132 [hep-ph] Andre de Gouvea, Bhupal Dev, Bhaska Dutta, T. Ghosh, TH, Yongchao Zhang

# 1. "NSI": COHERENT & LHC

As originally formulated by Wolfenstein, NSI:  $\mathscr{L}_{\text{NSI}} = -2\sqrt{2}G_F \sum_{f,C,\alpha,\beta} \epsilon_{\alpha\beta}^{fP} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\bar{f}\gamma_{\mu}P_Cf)$   $= -\sqrt{2}G_F \epsilon_{\alpha\beta}^{fV} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\bar{f}\gamma_{\mu}f) - \sqrt{2}G_F \epsilon_{\alpha\beta}^{fA} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\bar{f}\gamma_{\mu}\gamma^5 f)$   $\epsilon_{\alpha\beta}^{fV} \equiv \epsilon_{\alpha\beta}^{fL} + \epsilon_{\alpha\beta}^{fR}, \quad \epsilon_{\alpha\beta}^{fA} \equiv \epsilon_{\alpha\beta}^{fR} - \epsilon_{\alpha\beta}^{fL}$ 

- We will only consider the NC NSI.
- For a heavy mediator:  $\varepsilon \sim g'^2 v_{EW}^2/M^2$ .
- Interesting to consider UV formulation

L. Wolfenstein (1978); T. Ohlsson arXiv:1209.2710; Farzan & Tortola, arXiv:1710.09160. Consider a UV-complete U(1)' model:

$$\mathscr{L} = \mathscr{L}_{\rm SM} - \frac{1}{4} Z^{\prime\mu\nu} Z^{\prime}_{\mu\nu} + \frac{1}{2} M_{Z^{\prime}}^2 Z^{\prime\mu} Z^{\prime}_{\mu} + Z^{\prime}_{\mu} J^{\mu}_X$$
$$J^{\mu}_X = g^{\prime} \left[ \sum_q Q^{\prime}_q \bar{q} \gamma^{\mu} q + \sum_{L_{\ell} = \nu_{\ell L}, \ell} Q^{\prime}_{\ell} \overline{L_{\ell}} \gamma^{\mu} L_{\ell} \right]$$

the quark charges  $Q'_{1,2,3}$  and lepton charges  $Q'_{e,\mu,\tau}$  satisfying the constraint

$$\begin{aligned} &3(Q_1' + Q_2' + Q_3') + Q_e' + Q_{\mu}' + Q_{\tau}' = 0 \,. \\ &Q_1' = Q_2' = Q_3' = Q_q' \end{aligned}$$

Consider a UV-complete U(1)' model:

$$\mathscr{L} = \mathscr{L}_{\rm SM} - \frac{1}{4} Z^{\prime\mu\nu} Z^{\prime}_{\mu\nu} + \frac{1}{2} M_{Z^{\prime}}^2 Z^{\prime\mu} Z^{\prime}_{\mu} + Z^{\prime}_{\mu} J^{\mu}_X$$
$$J^{\mu}_X = g^{\prime} \left[ \sum_q Q^{\prime}_q \bar{q} \gamma^{\mu} q + \sum_{L_{\ell} = \nu_{\ell L}, \ell} Q^{\prime}_{\ell} \overline{L_{\ell}} \gamma^{\mu} L_{\ell} \right]$$

the quark charges  $Q'_{1,2,3}$  and lepton charges  $Q'_{e,\mu,\tau}$  satisfying the constraint

$$\begin{aligned} &3(Q_1' + Q_2' + Q_3') + Q_e' + Q_{\mu}' + Q_{\tau}' = 0 \,. \\ &Q_1' = Q_2' = Q_3' = Q_q' \end{aligned}$$

Our representative choices for U(1)' charges: (A)  $Q'_q = 1/3, Q'_{\mu} = -3, Q'_e = Q'_{\tau} = 0.$ (B)  $Q'_q = 1/3, Q'_{\mu} = Q'_{\tau} = -3/2, Q'_e = 0.$ (C)  $Q'_q = 1/3, Q'_{\tau} = -3, Q'_e = Q'_{\mu} = 0.$ 

Electron flavor heavily constrained (beam-dump), not included here
 MZ' ~ 5 MeV – O(TeV)
 → heavy for oscillation expts, but suitable for LHC searches.

### Neutrino oscillation experiments

$$H = \frac{1}{2E} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \delta m_{21}^2 & 0 \\ 0 & 0 & \delta m_{31}^2 \end{pmatrix} U^{\dagger} + V, \qquad V = \sqrt{2} G_F N_e \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix}$$

| $\epsilon^u_{\alpha\alpha}$ | Current data                               | DUNE+T2HK                                  |  |  |
|-----------------------------|--------------------------------------------|--------------------------------------------|--|--|
| $\epsilon^u_{ee}$           | $[-1.192, -0.802] \oplus [-0.020, +0.456]$ | $[-0.407, -0.270] \oplus [-0.072, +0.064]$ |  |  |
| $\epsilon^u_{\mu\mu}$       | [-0.130, 0.152]                            | [-0.019, +0.018]                           |  |  |
| $\epsilon^u_{	au	au}$       | [-0.152, 0.130]                            | [-0.017, +0.017]                           |  |  |

#### I. Esteban et al., arXiv:1805.04530.

**Table 1**:  $2\sigma$  allowed ranges for the diagonal NSI parameters from the global analysis of current oscillation data assuming both LMA and LMA-D [22] and from the simulation of next generation neutrino oscillation experiments DUNE and T2HK.

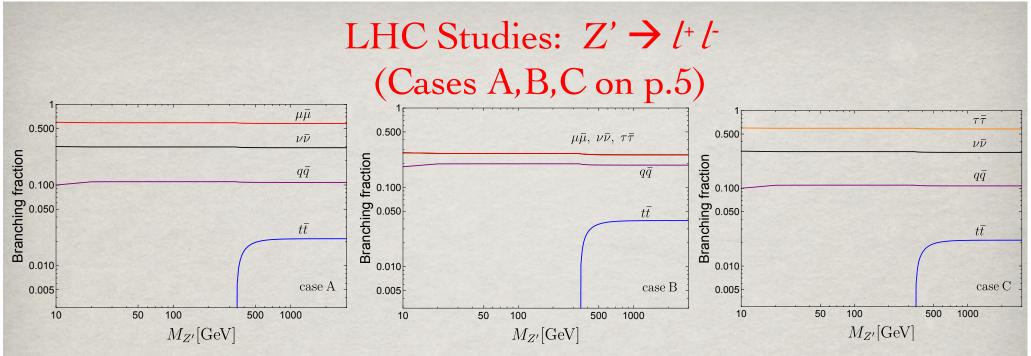
### Neutrino oscillation experiments

$$H = \frac{1}{2E} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \delta m_{21}^2 & 0 \\ 0 & 0 & \delta m_{31}^2 \end{pmatrix} U^{\dagger} + V, \qquad V = \sqrt{2} G_F N_e \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix}$$

| $\epsilon^u_{\alpha\alpha}$ | Current data                               | DUNE+T2HK                                  |  |  |
|-----------------------------|--------------------------------------------|--------------------------------------------|--|--|
| $\epsilon^u_{ee}$           | $[-1.192, -0.802] \oplus [-0.020, +0.456]$ | $[-0.407, -0.270] \oplus [-0.072, +0.064]$ |  |  |
| $\epsilon^u_{\mu\mu}$       | [-0.130, 0.152]                            | [-0.019, +0.018]                           |  |  |
| $\epsilon^u_{\tau\tau}$     | [-0.152, 0.130]                            | [-0.017, +0.017]                           |  |  |

#### I. Esteban et al., arXiv:1805.04530.

**Table 1**:  $2\sigma$  allowed ranges for the diagonal NSI parameters from the global analysis of current oscillation data assuming both LMA and LMA-D [22] and from the simulation of next generation neutrino oscillation experiments DUNE and T2HK.


In our Z' model:  $M_{Z'} \sim 5 \text{ MeV} - 20 \text{ MeV}$ 

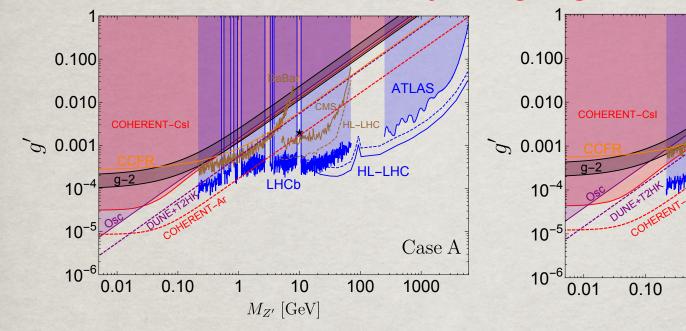
$$\mathscr{L}_{\text{eff}} = \frac{(g')^2}{M_{Z'}^2} \left[ \sum_q Q'_q \bar{q} \gamma^\mu q \right] \left[ \sum_\alpha Q'_\alpha \bar{\nu}_\alpha \gamma^\mu P_L \nu_\alpha \right] \qquad \epsilon_{\alpha\alpha}^{qV} = -\frac{(g')^2 Q'_\alpha Q'_q}{\sqrt{2}G_F M_{Z'}^2}$$

$$\epsilon_{lphaeta} \equiv \sum_{q} \epsilon^{qV}_{lphaeta} rac{N_q}{N_e}$$

#### CEvNS Constraints – COHERENT expt

 $M_{Z'} \sim 10 \text{ MeV} - 10 \text{ GeV}$  $\pi^+ \to \mu^+ + \nu_\mu$ , and detector  $\mathbf{SM} \quad \mu^+ \to e^+ + \bar{\nu}_\mu + \nu_e.$  $\frac{\det \cot r}{N_{th}(t, E_r, \epsilon)} = \sum_{\alpha} \underbrace{\frac{m_{\det}N_A}{M}}_{\alpha} \int_{\Delta E_r} dE_r \int_{\Delta t} \frac{dt\rho_{\alpha}(t)}{dt\rho_{\alpha}(t)} \int_{E_{\nu}^{\min}}^{E_{\nu}^{\max}} \frac{SM}{dE_{\nu}} \frac{\mu^+ \to e^+ + \mu^+}{dE_{\nu}} \int_{E_{\nu}^{\min}} \frac{d\sigma_{\alpha}(\epsilon)}{dE_r}$  $\phi_{\nu_{\mu}}(E_{\nu_{\mu}}) = \frac{2m_{\pi}}{m^2 - m^2} \,\delta\left(1 - \frac{2E_{\nu_{\mu}}m_{\pi}}{m^2 - m^2}\right)$  $\frac{d\sigma_{\alpha}(\epsilon)}{dE_{\pi}} = \frac{G_F^2}{2\pi} Q_{\alpha}^2 F^2(Q^2) M(2 - \frac{ME_r}{E^2}),$  $\phi_{\nu_e}(E_{\nu_e}) = \frac{192}{m_\mu} \left(\frac{E_{\nu_e}}{m_\mu}\right)^2 \left(\frac{1}{2} - \frac{E_{\nu_e}}{m_\mu}\right) ,$  $Q_{\alpha}^{2} = \left[Z(g_{n}^{V} + 2\epsilon_{\alpha\alpha}^{uV} + \epsilon_{\alpha\alpha}^{dV}) + N(g_{n}^{V} + \epsilon_{\alpha\alpha}^{uV} + 2\epsilon_{\alpha\alpha}^{dV})\right]^{2}$  $\phi_{\bar{\nu}_{\mu}}(E_{\bar{\nu}_{\mu}}) = \frac{64}{m_{\nu}} \left(\frac{E_{\bar{\nu}_{\mu}}}{m_{\nu}}\right)^2 \left(\frac{3}{4} - \frac{E_{\bar{\nu}_{\mu}}}{m_{\nu}}\right) \,,$  $\frac{d\sigma_{\alpha,\text{CsI}}}{dE_r} = \frac{d\sigma_{\alpha,\text{Cs}}}{dE_r} + \frac{d\sigma_{\alpha,\text{I}}}{dE_r} \qquad \epsilon_{ee}^{uV} = \epsilon_{ee}^{dV} = \frac{g'^2 Q'_q Q'_e}{\sqrt{2}G_F(2ME_r + M_{T'}^2)}$  $\epsilon^{uV}_{\mu\mu} = \epsilon^{dV}_{\mu\mu} = \frac{g'^2 Q'_q Q'_\mu}{\sqrt{2}G_F (2ME_r + M_{\pi'}^2)}$  $\chi^{2} = \sum_{i=1}^{10} \left[ \frac{N_{\text{meas}}^{i} - N_{\text{th}}^{i}(1+\gamma) - B_{\text{on}}(1+\beta)}{\sigma_{\text{stat}}^{i}} \right]^{2} + \left(\frac{\gamma}{\sigma_{\gamma}}\right)^{2} + \left(\frac{\beta}{\sigma_{\beta}}\right)^{2}$ 




For  $\mathbf{M}_{\mathbf{Z}'} < \mathbf{M}_{\mathbf{Z}}$   $pp \to Z^*/\gamma^* \to \ell^+\ell^- + Z' \to \ell^+\ell^- + \ell^+\ell^- + X.$ 

### LHCb & CMS 4-lepton recast

For  $M_{Z'} > M_Z$   $pp \to Z' \to \ell^+ \ell^- + X$ 

- ATLAS/CMS existing results recast
- HL-LHC new study

#### Everything together



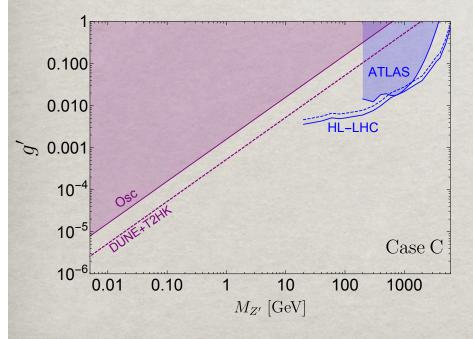


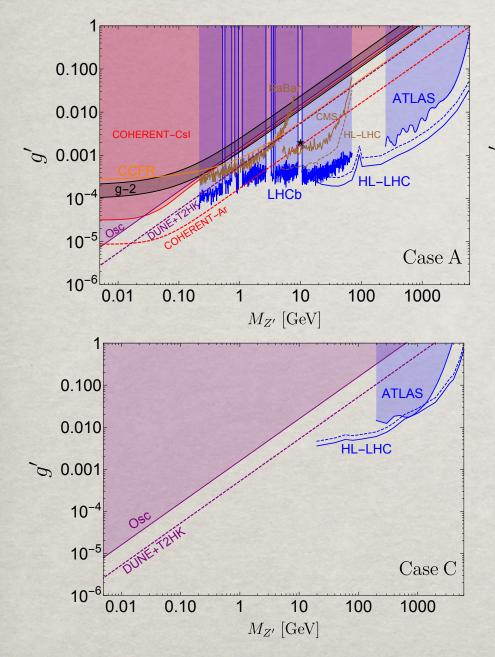

Figure 2: Bounds on q' for Cases A (upper left panel), B (upper right panel) and C (lower panel). The red shaded areas correspond to the  $2\sigma$  exclusion regions by using the energy spectrum from the COHERENT CsI detector [9]. The red dashed lines show the expected  $2\sigma$  limit from COHERENT with a 750 kg LAr detector [22] and a 4-year exposure using both energy and time information. The purple areas correspond to the  $2\sigma$  bounds from a global fit to neutrino oscillation data [21]. The dashed purple lines show the expected  $2\sigma$  exclusion limit from DUNE and T2HK combined. Regions above the brown curves are excluded by CMS [23] and BaBar [24] at  $2\sigma$  and 90% CL, respectively, using  $pp/e^+e^- \rightarrow \mu^+\mu^- Z'$  searches. The brown dashed curves are the  $2\sigma$  expected sensitivities from HL-LHC, with an integrated luminosity of 3000 fb<sup>-1</sup>, in the  $\mu^+\mu^- Z'$  channel, and the blue solid (dashed) curves correspond to the expected  $2\sigma$  (5 $\sigma$ ) limit using di-muon searches for Cases A and B, and di-tau searches for Case C. In the upper panels, the blue shaded regions are excluded at 90% CL by the LHCb dark photon searches [25] and at  $2\sigma$ by the ATLAS di-muon searches [26] with 139 fb<sup>-1</sup>. In the lower panel, the blue area is excluded at  $2\sigma$  by the ATLAS di-tau searches [27] with 36.1 fb<sup>-1</sup>. The  $2\sigma$  limit from CCFR [28, 29] is given by the orange curves. The  $2\sigma$  allowed regions that explain the discrepancy in the anomalous magnetic moment of the muon  $(\Delta a_{\mu} = (29 \pm 9) \times 10^{-10} [30])$  are indicated by the black band. The black stars mark the benchmark points we consider in Section 5.

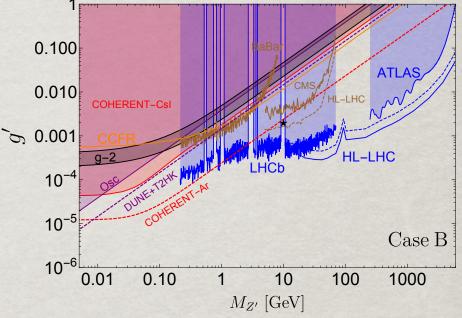
1

10

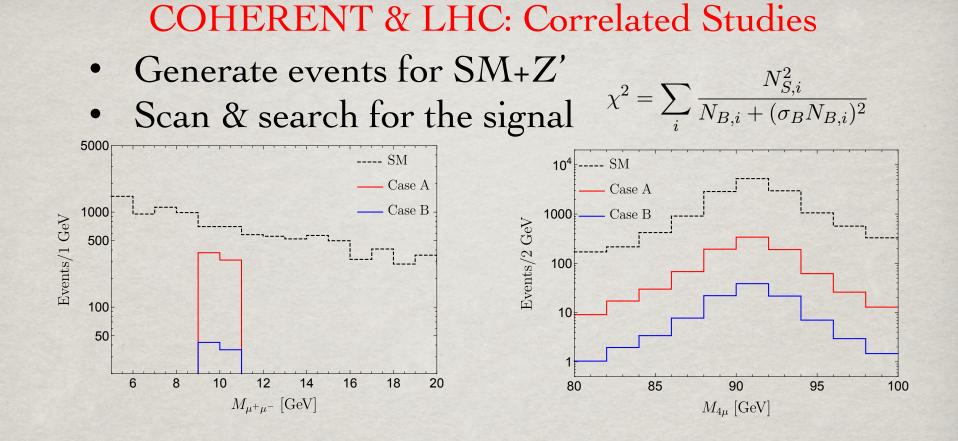
 $M_{Z'}$  [GeV]

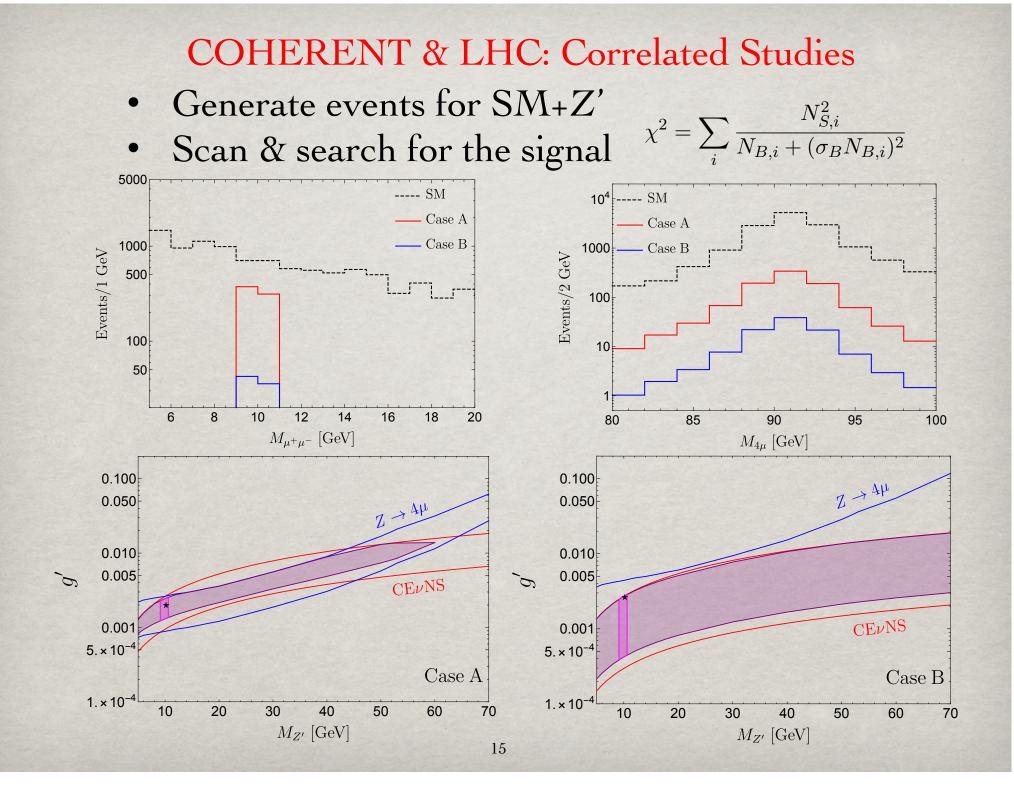
ATLAS


Case B


1000

HL-LHC


100


### Everything together





- $M_{Z'} \sim 5 \text{ MeV} 20 \text{ MeV}$ : DUNE+T2HK
- M<sub>Z'</sub> ~ 20 MeV 1 GeV: COHERENT Lar
- M<sub>Z'</sub> ~ 1 GeV 20 GeV: LHCb, CMS 4-leptons
- M<sub>Z'</sub> ~ 20 GeV 4 TeV: HL-LHC 2-leptons





Tree-level "seesaw mechanism"

The dim-5 Weinberg operator:

 $\frac{1}{\Lambda} (y_{\nu}LH)(y_{\nu}LH) + h.c. \quad \Rightarrow \quad \frac{y_{\nu}^2 v^2}{\Lambda} \overline{\nu_L} v_R^c.$ 



Tree-level "seesaw mechanism" The dim-5 Weinberg operator:  $\frac{1}{\Lambda} (y_{\nu}LH)(y_{\nu}LH) + h.c. \Rightarrow \frac{y_{\nu}^2 v^2}{\Lambda} \overline{\nu_L} v_R^c.$ 



Type-I: Add  $\mathbf{N}_{\mathbf{R}}$ 's  $(\overline{\nu_{L}} \ \overline{N^{c}}_{L}) \begin{pmatrix} \mathbf{0}_{3\times3} & D^{\nu}_{3\times n} \\ D^{\nu T}_{n\times3} & M_{n\times n} \end{pmatrix} \begin{pmatrix} \nu^{c}_{R} \\ N_{R} \end{pmatrix}$  (along with  $\mathbf{W}_{\mathbf{R}}$ )

Minkowski (1976); Yanagita (1979); Glashow (1980); Mohapatra, Senjanovic (1980); Magg, Wetterich (1980); Lasarides, Shafi (1981); Mohapatra, Senjanovic (1981); Foot, Lew, He, Joshi (1989); G. Senjanovic (1981)

Tree-level "seesaw mechanism" The dim-5 Weinberg operator:  $\frac{1}{\Lambda} (y_{\nu}LH)(y_{\nu}LH) + h.c. \Rightarrow \frac{y_{\nu}^2 v^2}{\Lambda} \overline{\nu_L} v_R^c.$ 



Type-I: Add N<sub>R</sub>'s  $(\overline{\nu_L} \ \overline{N^c}_L) \begin{pmatrix} 0_{3\times3} & D^{\nu}_{3\times n} \\ D^{\nu T}_{n\times3} & M_{n\times n} \end{pmatrix} \begin{pmatrix} \nu^c_R \\ N_R \end{pmatrix}$ (along with W<sub>R</sub>)

Type-II: Add a scalar triplet  $\Phi (Y = 2) : \phi^{\pm\pm}, \phi^{\pm}, \phi^{0}$  (along with  $W_R$ )  $Y_{ij}L_i^T C(i\sigma_2)\Phi L_j + h.c. \mu H^T(i\sigma_2)\Phi^{\dagger}H + h.c.$ 

Minkowski (1976); Yanagita (1979); Glashow (1980); Mohapatra, Senjanovic (1980); Magg, Wetterich (1980); Lasarides, Shafi (1981); Mohapatra, Senjanovic (1981); Foot, Lew, He, Joshi (1989); G. Senjanovic (1981)

Tree-level "seesaw mechanism" The dim-5 Weinberg operator:  $\frac{1}{\Lambda} (y_{\nu}LH)(y_{\nu}LH) + h.c. \Rightarrow \frac{y_{\nu}^2 v^2}{\Lambda} \overline{\nu_L} v_R^c.$ 

Type-I: Add N<sub>R</sub>'s  $(\overline{\nu_L} \ \overline{N^c}_L) \begin{pmatrix} 0_{3\times3} & D^{\nu}_{3\times n} \\ D^{\nu T}_{n\times3} & M_{n\times n} \end{pmatrix} \begin{pmatrix} \nu^c_R \\ N_R \end{pmatrix}$ (along with W<sub>R</sub>)

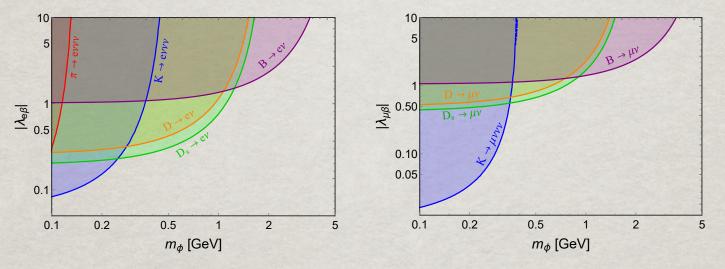


Type-II: Add a scalar triplet  $\Phi(Y = 2) : \phi^{\pm\pm}, \phi^{\pm}, \phi^{0}$  (along with  $W_R$ )  $Y_{ij}L_i^T C(i\sigma_2)\Phi L_j + h.c. \mu H^T(i\sigma_2)\Phi^{\dagger}H + h.c.$ 

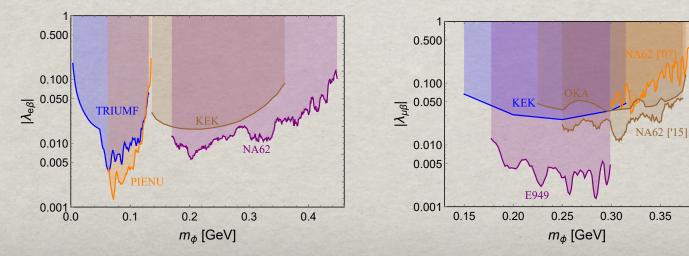
Type-III: Add a fermionic triplet T (Y = 0):  $T^+ T^0 T^-$ 

 $-M_T(T^+T^- + T^0T^0/2) + y_T^i H^T i\sigma_2 TL_i + h.c.$ 

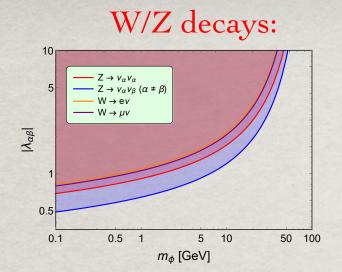
Minkowski (1976); Yanagita (1979); Glashow (1980); Mohapatra, Senjanovic (1980); Magg, Wetterich (1980); Lasarides, Shafi (1981); Mohapatra, Senjanovic (1981); Foot, Lew, He, Joshi (1989); G. Senjanovic (1981) 2. NSI with a "Leptonic Scalar" Neutrinos are elusive, and could couple to new particles, and thus modify their behaviors. Consider:


$${\cal L} \ \supset \ {1\over 2} \lambda_{lphaeta} \ \phi \ 
u_lpha 
u_eta$$

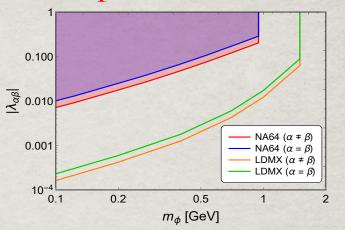
- $\phi$  carries lepton-number L = -2
- At renormalizable level:  $\phi \nu_R \nu_R$
- At dim-6:  $\lambda_{\alpha\beta} \sim \kappa_1 \kappa_2 v_{\rm EW}^2/M^2$
- Could be from a UV complete formulation
- It can radiate off any neutrino and thus could effect many processes:
  - meson decays; W/Z decays
  - light DM searches; IceCube
  - collider experiments

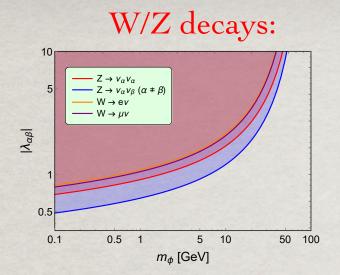

#### Low energy bounds: Meson decays

For leptonic decays of charged mesons  $P^- \to \ell^- \bar{\nu}$  with  $P^- = \pi^-, K^-, D^-, D^-_S, B^-$ 

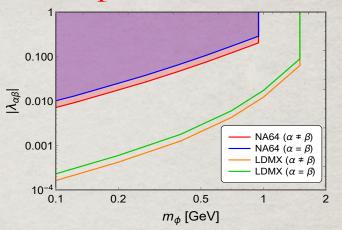

$$\begin{split} \Gamma(P^- \to \ell_{\alpha}^- \bar{\nu}\phi) &= \frac{G_F^2 |V_{qq'}|^2 m_P^3 f_P^2 \sum_{\beta} |\lambda_{\alpha\beta}|^2}{256\pi^3} \\ &\times \int_{x_{\phi}}^{(1-\sqrt{x_{\ell}})^2} \mathrm{d}x \frac{\left((x+x_{\ell}) - (x-x_{\ell})^2\right) (x-x_{\phi})^2}{x^3} \lambda^{1/2}(1, x, x_{\ell}) \end{split}$$




Heavy neutrino searches in meson decay spectra



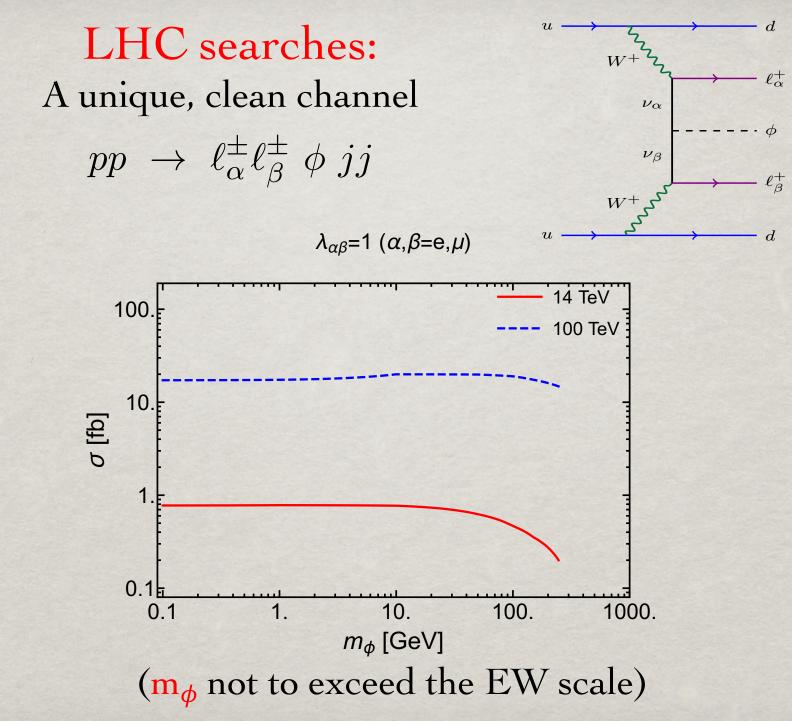

0.40




#### Dark photon/DM searches:

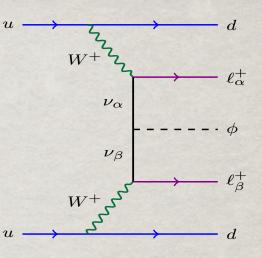




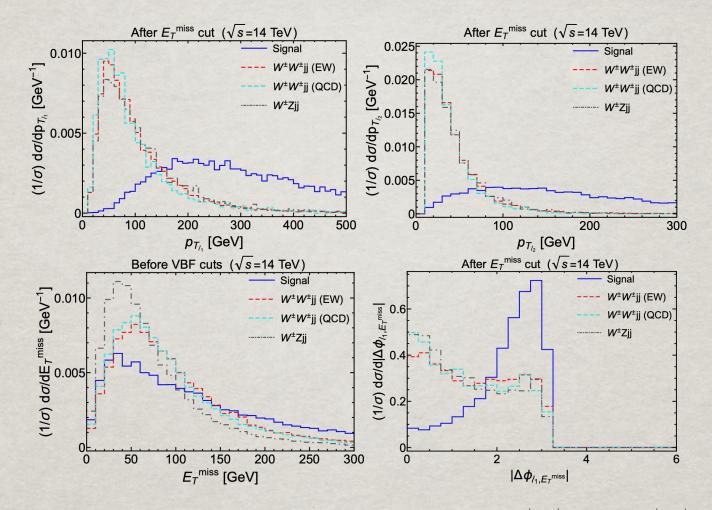

#### Dark photon/DM searches:



| Ref.     | Process                                    | Data                                  | Couplings                                         | Mass range                                   |  |
|----------|--------------------------------------------|---------------------------------------|---------------------------------------------------|----------------------------------------------|--|
| [1, 2]   | $\pi^- \to e^- \bar{\nu}_e \nu \bar{\nu}$  | $BR < 5 \times 10^{-6}$               | $\sum_eta  \lambda_{eeta} ^2$                     | $m_{\phi} < 131 \text{ MeV}$                 |  |
| [1, 2]   | $K^- \to e^- \bar{\nu}_e \nu \bar{\nu}$    | $BR < 6 \times 10^{-5}$               | $\sum_{eta}  \lambda_{eeta} ^2$                   | $m_{\phi} < 444 \text{ MeV}$                 |  |
| [1, 2]   | $K^- 	o \mu^- \bar{\nu}_\mu \nu \bar{\nu}$ | $\mathrm{BR} < 2.4 \times 10^{-6}$    | $\sum_eta  \lambda_{\mueta} ^2$                   | $m_\phi < 386~{ m MeV}$                      |  |
| [1, 2]   | $D^- \to e^- \bar{\nu}_e$                  | $BR < 8.8 \times 10^{-6}$             | $\sum_eta  \lambda_{eeta} ^2$                     | $m_{\phi} < 1.52 \text{ GeV}$                |  |
| [1, 2]   | $D^- 	o \mu^- \bar{\nu}_\mu$               | $\mathrm{BR} < 3.4 \times 10^{-5}$    | $\sum_eta  \lambda_{\mueta} ^2$                   | $m_{\phi} < 1.39 { m ~GeV}$                  |  |
| [1, 21]  | $D_s^- \to e^- \bar{\nu}_e$                | $\mathrm{BR} < 8.3 \times 10^{-5}$    | $\sum_{eta}  \lambda_{eeta} ^2$                   | $m_{\phi} < 1.64 \text{ GeV}$                |  |
| [1, 21]  | $D_s^- \to \mu^- \bar{\nu}_\mu$            | $BR = (5.50 \pm 0.23) \times 10^{-3}$ | $\sum_eta  \lambda_{\mueta} ^2$                   | $m_{\phi} < 1.50 { m ~GeV}$                  |  |
| [1, 21]  | $B^- \to e^- \bar{\nu}_e$                  | $\mathrm{BR} < 9.8 \times 10^{-7}$    | $\sum_{eta}  \lambda_{eeta} ^2$                   | $m_{\phi} < 3.54 \text{ GeV}$                |  |
| [1, 21]  | $B^- 	o \mu^- \bar{\nu}_\mu$               | $BR = (2.90 - 10.7) \times 10^{-7}$   | $\sum_eta  \lambda_{\mueta} ^2$                   | $m_{\phi} < 3.50 { m ~GeV}$                  |  |
| [1, 20]  | $\tau^- \to e^- \bar{\nu}_e \nu_\tau$      | $BR = (17.82 \pm 0.04)\%$             | $\sum_{eta}  \lambda_{eeta} ^2$                   | $m_{\phi} < 741 \text{ MeV}$                 |  |
| [1, 20]  | $\tau^- 	o \mu^- \bar{\nu}_\mu \nu_\tau$   | $BR = (17.39 \pm 0.04)\%$             | $\sum_eta  \lambda_{\mueta} ^2$                   | $m_{\phi} < 741 { m ~MeV}$                   |  |
| [1, 21]  | $P^- \rightarrow e^- N$                    | see Ref. [25]                         | $\sum_{eta}  \lambda_{eeta} ^2$                   | $3.3\mathrm{MeV} < m_\phi < 448\mathrm{MeV}$ |  |
| [1, 21]  | $P^- \to \mu^- N$                          | see Ref. [25]                         | $\sum_eta  \lambda_{\mueta} ^2$                   | $87{\rm MeV} < m_\phi < 379{\rm MeV}$        |  |
| [1]      | $Z \to \text{inv.}$                        | $BR = (20.0 \pm 0.055)\%$             | $\sum_{lpha,eta}S_{lphaeta} \lambda_{lphaeta} ^2$ | $m_{\phi} < 52.2 \text{ GeV}$                |  |
| [1]      | $W \to e \nu$                              | $BR = (10.71 \pm 0.16)\%$             | $\sum_eta  \lambda_{eeta} ^2$                     | $m_{\phi} < 38.8 { m ~GeV}$                  |  |
| [1]      | $W  ightarrow \mu  u$                      | $BR = (10.63 \pm 0.15)\%$             | $\sum_eta  \lambda_{\mueta} ^2$                   | $m_\phi < 39.3~{ m GeV}$                     |  |
| [2]      | MINOS                                      | see Ref. [2]                          | $ \lambda_{\mu\mu} $                              | $m_{\phi} < 1.67 { m ~GeV}$                  |  |
| [2]      | DUNE                                       | see Ref. [2]                          | $ \lambda_{\mu\mu} $                              | $m_{\phi} < 3.00 { m ~GeV}$                  |  |
| [26]     | NA64                                       | see Ref. [26]                         | $\sum_{lpha,eta}S_{lphaeta} \lambda_{lphaeta} ^2$ | $m_{\phi} < 948 { m ~MeV}$                   |  |
| [27]     | LDMX                                       | see Ref. [27]                         | $\sum_{lpha,eta}S_{lphaeta} \lambda_{lphaeta} ^2$ | $m_{\phi} < 1.50 { m ~GeV}$                  |  |
| [28, 29] | IceCube                                    | see Ref. [28]                         | $ \lambda_{lphaeta} $                             | $m_{\phi} < 2.0  (15.0)   { m GeV}$          |  |


# Some other constraints:

- Muon decay: As discussed in Section 2.4, φ can be emitted from tree-level decay μ → eννφ. As a result of the precise μ decay data, for sufficiently light φ, the limits from μ decay are expected to be much more stringent than those from τ decays. In addition, the electron [98, 99] and neutrino [100, 101] spectra could be altered in presence of φ, which can also be used to set limits on λ<sub>αβ</sub>.
- Tritium decay: If the scalar mass  $m_{\phi} \leq \mathcal{O}(10 \text{ eV})$ , it can be produced from tritium decay in the process  ${}^{3}\text{H} \rightarrow {}^{3}\text{He}^{+} + e^{-} + \nu + \phi$  [102], and this process can be probed in the KATRIN experiment [103, 104].
- $0\nu\beta\beta$  decay: The coupling of  $\phi$  to electron neutrinos contributes to  $0\nu\beta\beta$  decays via the process  $(Z, A) \rightarrow (Z + 2, A)e^-e^-\phi$  if the mass  $m_\phi \lesssim \mathcal{O}(\text{MeV})$  – the typical Qvalue for the relevant nuclei. This is strongly constrained by the searches of Majoron emission in  $0\nu\beta\beta$  decay experiments like NEMO-3 using <sup>100</sup>Mo [6, 7, 11] and <sup>150</sup>Nd [9] nuclei, as well as KamLAND-Zen [12] and EXO-200 [13] using <sup>136</sup>Xe. Somewhat weaker limits were also obtained by NEMO-3 using <sup>48</sup>Ca [8] and <sup>82</sup>Se [10], as well as by GERDA using <sup>76</sup>Ge [14].
- Supernovae: A light  $\phi$  can be produced abundantly in the supernova core if its mass  $m_{\phi} \lesssim \mathcal{O}(30 \text{ MeV})$  the typical core temperature of supernovae. The couplings  $|\lambda_{\alpha\beta}|$  can be constrained from both the luminosity and deleptonization arguments [105–107].
- CMB and BBN: As a light particle,  $\phi$  itself contributes to the relativistic degrees of freedom  $N_{\rm eff}$  if the mass  $m_{\phi} \lesssim 100 \text{ keV}$  [108]. The current precision cosmological data  $\Delta N_{\rm eff} = 0.18$  at  $1\sigma$  C.L. [109] has excluded a large parameter space for such light leptonic scalar mass  $m_{\phi}$  and the couplings  $|\lambda_{\alpha\beta}|$ . Similarly, the big-bang-nucleosynthesis (BBN) constraints rule out  $m_{\phi} \lesssim 0.2$  MeV for sizable couplings  $\lambda_{\alpha\beta}$ , as long as they allow  $\phi$  particles to thermalize at BBN temperature [110].
- Neutrino decay: For sufficiently light  $\phi$ , the heavier neutrinos might decay via  $\nu_j \rightarrow \nu_i + \phi$  with the mass indices i, j = 1, 2, 3 and i < j. Therefore we can impose stringent bounds on the leptonic scalar mass  $m_{\phi}$  and the  $\lambda_{ij}$  couplings from the solar neutrino data [111–115]. There are also constraints from atmospheric and long baseline experiments [116–118]. The CMB limits on neutrino free streaming could also set limits on neutrino decays, as long as the mediator is lighter than neutrino mass and the non-diagonal couplings  $\lambda_{ij}$  are non-vanishing [93, 94, 119].




### Signal & Backgrounds:

- the EW process  $pp \to W^{\pm}W^{\pm}jj \to jj\ell_{\alpha}^{\pm}\ell_{\beta}^{\pm}\nu\nu$ ,
- the QCD process  $pp \to W^{\pm}W^{\pm}jj \to jj\ell_{\alpha}^{\pm}\ell_{\beta}^{\pm}\nu\nu$
- $pp \to W^{\pm}Zjj \to jj\ell^{\pm}_{\alpha}\ell^{\pm}_{\beta}\ell^{\mp}_{\beta}\nu$ ,



| Ch               | $e^{\pm}e^{\pm}$ | $e^{\pm}\mu^{\pm}$ | $\mu^{\pm}\mu^{\pm}$ | Total |      |
|------------------|------------------|--------------------|----------------------|-------|------|
| S                | 40               | 129                | 84                   | 253   |      |
| $W^{\pm}W$       | 37               | 137                | 89                   | 263   |      |
| $W^{\pm}W^{\pm}$ | 2                | 9                  | 2                    | 13    |      |
| W                | 29               | 94                 | 54                   | 177   |      |
| Total background |                  | 68                 | 240                  | 145   | 453  |
| Simifanna        | syst. error 0%   | 3.87               | 6.73                 | 5.53  | 9.53 |
| Significance     | syst. error 10%  | 3.24               | 4.21                 | 4.00  | 4.83 |



**Figure 8**. Kinematic distributions of the signal and SM backgrounds  $W^{\pm}W^{\pm}jj$  (EW),  $W^{\pm}W^{\pm}jj$  (QCD) and  $W^{\pm}Zjj$  after the  $E_T^{\text{miss}}$  cut. The top left and right panels are respectively for the  $p_T$  distributions of the leading lepton  $\ell_1$  and the sub-leading lepton  $\ell_2$ , and the lower left and right panels respectively for the missing transverse energy  $E_T^{\text{miss}}$  and the angular separation  $|\Delta \phi_{\ell_1} E_T^{\text{miss}}|$ . Only the  $E_T^{\text{miss}}$  distribution is shown before VBF cuts.

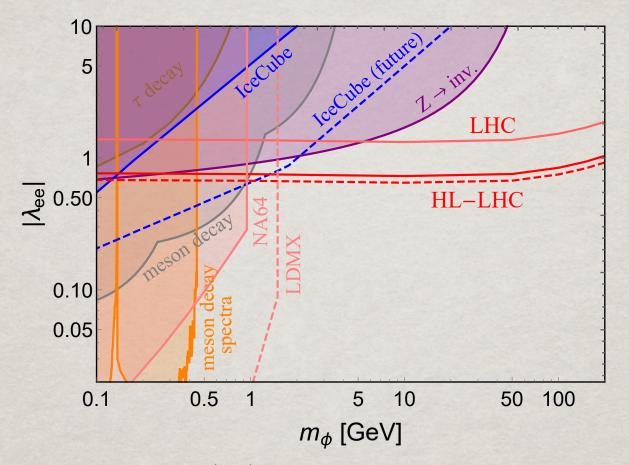
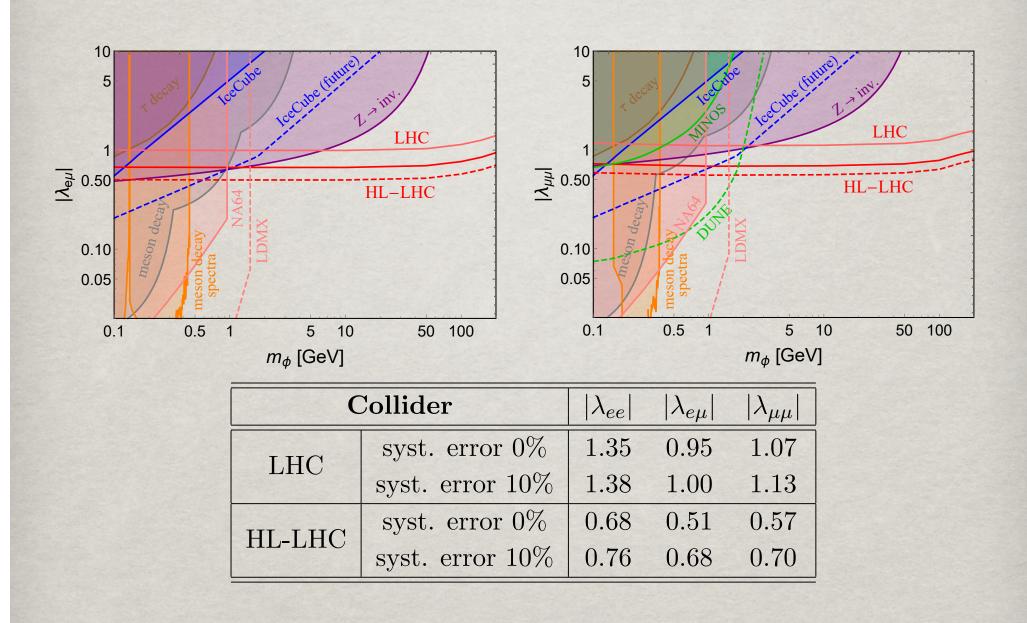
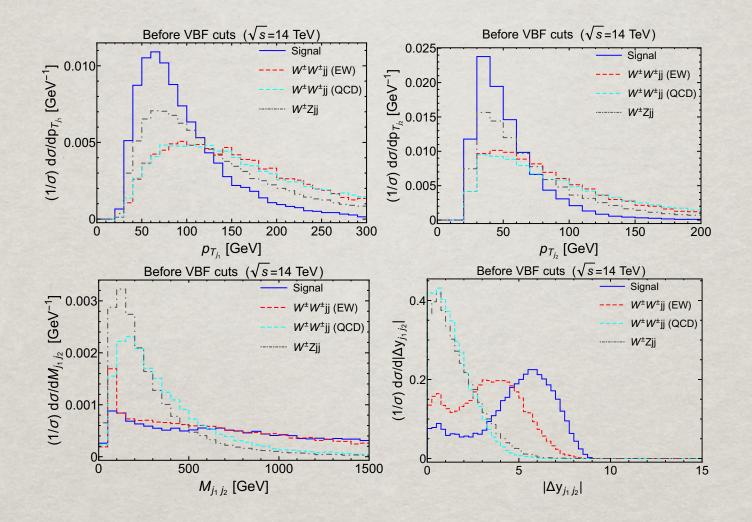




Figure 9. Prospects of the coupling  $|\lambda_{ee}|$  as a function of the scalar mass  $m_{\phi}$  at 14 TeV LHC with luminosity of 300 fb<sup>-1</sup> (solid thin red line) and HL-LHC with 3 ab<sup>-1</sup> and with systematic errors of 10% (solid thick red line) and 0% (dashed thick red line). Also shown are the low-energy limits (cf. Table 1) from meson decay (gray),  $\tau$  decay (brown), heavy neutrino searches in meson decay spectra (orange), invisible Z decay (purple), light DM searches in NA64 (pink) and the prospects at LDMX (dashed pink), the current IceCube limits on neutrino-neutrino interactions (blue) and prospects (dashed blue). All the shaded regions are excluded.



### SUMMARY


- NSI's obvious targets to scrutinize.
- Example 1: a UV complete model Z'
  - $M_{Z'} \sim 5 \text{ MeV} 20 \text{ MeV}$ : DUNE+T2HK
  - $M_{Z'} \sim 20 \text{ MeV} 1 \text{ GeV}$ : COHERENT Lar
  - $M_{Z'} \sim 1 \text{ GeV} 20 \text{ GeV}$ : LHCb, CMS 4-leptons
  - $M_{Z'} \sim 20 \text{ GeV} 4 \text{ TeV}$ : HL-LHC 2-leptons
  - There are parameter regions for correlated studies

### SUMMARY

- NSI's obvious targets to scrutinize.
- Example 1: a UV complete model Z'
  - $M_{Z'} \sim 5 \text{ MeV} 20 \text{ MeV}$ : DUNE+T2HK
  - $M_{Z'} \sim 20 \text{ MeV} 1 \text{ GeV}$ : COHERENT Lar
  - $M_{Z'} \sim 1 \text{ GeV} 20 \text{ GeV}$ : LHCb, CMS 4-leptons
  - $M_{Z'} \sim 20 \text{ GeV} 4 \text{ TeV}$ : HL-LHC 2-leptons
  - There are parameter regions for correlated studies
- Example 2: a "leptonic scalar" φ λ<sub>αβ</sub> φ ν<sub>α</sub>ν<sub>β</sub> radiated off neutrinos, carrying away missing energy & lepton-number. Sensitivity on λ<sub>αβ</sub>: Meson decays: 0.01; NA64: 0.02; DUNE: 0.08; IceCube: 0.3; Z-decay: 0.6; LHC: 1; HL-LHC: 0.5

### SUMMARY

- NSI's obvious targets to scrutinize.
- Example 1: a UV complete model Z'
  - $M_{Z'} \sim 5 \text{ MeV} 20 \text{ MeV}$ : DUNE+T2HK
  - $M_{Z'} \sim 20 \text{ MeV} 1 \text{ GeV}$ : COHERENT Lar
  - $M_{Z'} \sim 1 \text{ GeV} 20 \text{ GeV}$ : LHCb, CMS 4-leptons
  - $M_{Z'} \sim 20 \text{ GeV} 4 \text{ TeV}$ : HL-LHC 2-leptons
  - There are parameter regions for correlated studies
- Example 2: a "leptonic scalar" φ λ<sub>αβ</sub> φ ν<sub>α</sub>ν<sub>β</sub> radiated off neutrinos, carrying away missing energy & lepton-number. Sensitivity on λ<sub>αβ</sub>: Meson decays: 0.01; NA64: 0.02; DUNE: 0.08; IceCube: 0.3; Z-decay: 0.6; LHC: 1; HL-LHC: 0.5
   Low-energy expts <-> LHC complementary!

