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the effective potential !(#) between revolving D3s is given by

D3 (p=3)

Angular frequency ω
#

#

BPS at ω= 0

for fixed ( ≠ 0

[1] Bottom-up Motivation for this calculation   Hierarchy problem 
[2] Implication from Superstring   string threshold corrections @ #<*s
[3] Method to calculate !(#) "partial modular transformation"

N. kitazawa,  H.Ohta, T.Suyama, SI 
hep-th/1909.10717  

"A main result of  this talk" 

SUGRA
@ large #

SYM ?
@ #~0
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Decoupling Theorem by Appelquist Carazzone = existence of EFT
IR EFT is described by light particles after integrating heavy particles.
The effects of heavy particles are renormalization of parameters in EFT. 

But Higgs mass in EFT may receive large threshold corrections by UV physics.

δm2
H =

g2

16π2

(
Λ2 +M2 log(Λ/M)

)

1

Radiative correction to the Higgs mass  has quadratic dependence 
on ! ≫ #$ due to the  logarithmic corrections with large coefficient !. 

TeV SUSY is used to be a promising solution, but
the situation has changed after the discovery of Higgs at 125 GeV.

[1] Bottom-up Motivation: Hierarchy Problem
Hierarchy problem:  
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2 important lessons from LHC for the Higgs potential

(1)   mass = 125 GeV

(2) No deviations from SM / no TeV SUSY?  
à An alternative to the Naturalness (=hierarchy) problem  

"EW" physics may be directly related to Planck scale physics
without intermediate scales in between. 

Froggatt Nielsen (96)
M.Shaposhnikov (07) 

After Higgs
SM  + something ------------------------------ Superstring

IR physics UV physics

Before Higgs

SM   � MSSM  � RHN,  SUSY GUT  � CY � Superstring
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In order to embed this model in superstring w/o hierarchy problem, 
what conditions are necessary ?

(1) EFT must contain   scalar field with flat potential

(2) No intermediate scales exist
Susy is broken at Planck scale

(3) Threshold corrections of UV physics must be suppressed 5

B-L  sector @ TeV
�U(1)B-L gauge
�SM singlet scalar
�Right-handed ν

Standard
Model +

flat potential
V(h)=0 @ Planck 

No intermediate scales

IR physics UV physics
EWSB by Coleman-Weinberg mechanism

My approach to the hierarchy problem: 

IR physics contains no dimensionful parameter.
=  "classically conformal" superstring

SI, Okada, Orikasa (2009)
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[2] Implication from Superstrings: 
embedding in superstring
calculation of stringy threshold corrections

N.kitazawa, H.Ohta, T.Suyama, SI 
hep-th/1909.10717  

N1

N2

D-branes
U(N1 + N2) à U(N1) � U(N2)r

How can we obtain a small value of  r ≪ "#$%&'(?
= Hierarchy problem in string theory 

Brane-world scenario
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D-brane universe

Masses of the open strings stretched between them vary 
according to their distances. 

à If the mass varies nonadiabatically, 
D-branes lose their energy by emitting a pair of open strings.

(similar to preheating mechanism)  “Beauty is attractive”

Open strings

Suppose that many D-branes are moving randomly. 
e.g.  D-brane inflation

Kofman et.a. (04)
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What is the fate of D-branes ?

Enomoto et.a. (2014) 

In the bosonic string,  they form a bound state
(if closed string emission is neglected. )
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In superstring theory

distance !

"# in $ = 10

No interaction
(BPS)

Attractive potential is generated 
by one-loop string amplitude

v4

r7−p

1

velocity (

Can they form a bound state ?
(cf. "0):  threshold bound state )

Rotational motion breaks SUSY  
à SUSY breaking scale = ω

Angular frequency ω

Bachas (96)
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Interaction potential between revolving D3-branes

Suppose that  two parallel D3s 
are rotating in a transverse plane

Calculation of the potential in string theory
= one-loop open string amplitude with rotating boundary condition 

In this paper, we propose an approximate method to calculate the threshold
corrections of open string massive modes. The method is to combine the SYM
and the supergravity calculations with an appropriate cutoff. The method was first
suggested in [DKPS], and uses a partial modular transformation (open-closed string
duality). The partial modular transformation avoids a double counting. We then
applied the method for calculating potential between revolving D3-branes and show
that the expected threshold corrections ∼ ω2r2 vanish. The first nontrivial threshold
corrections from massive open string modes are given by ∼ (ω4/m2

str)r
2, which are

suppressed by a factor of (ω/mstr)2.
The paper is organized as follows. In sec 2, we first introduce an approximate

method to calculate string threshold corrections from massive open string modes in
D-brane models. In sec 3, we apply the method and calculate effective potential of
the revolving Dp-branes. The contributions from massless open string modes are
calculated in the SYM theory with a stationary revolving background. In sec 4, we
calculate the contributions from massive open string modes using the supergravity
theory with an appropriate Schwinger parameter cutoff. In sec 5, we explicitly eval-
uate the effective potential V at short distance r ≪ mstr by expanding the formulae
derived in previous sections, sec 3 and sec 4, and then discuss a possibility of a bound
state.

2 String Threshold Corrections in D-brane Models

We are interested in calculating interaction potential between D-branes, which are
relatively moving in a target space-time. At weak string coupling, we can obtain
the effective potential by calculating one-loop partition function of an open string
stretched between the D-branes. For some simple cases, we can quantize the stretched
open strings exactly and determine a closed form of the one-loop effective potential.
But in many other cases where D-branes are accelerating, it is not possible to write
the effective potential in a closed form since open strings have complicated bound-
ary conditions. For example, when two D-branes are revolving like a binary star,
open string spectrum can be solved only perturbatively with respect to the relative
velocity [IOS]. Thus, in order to calculate the potential between these D-branes, it
is necessary to develop more clever methods. In this section, we propose a method
to obtain interaction potential between generally moving D-branes including thresh-
old corrections of massive open string modes. The method was first indicated in a
seminar paper [DKPS].

Schematically, the effective potential V (r) is given as

V (r) = −
∫ ∞

0

dt

t
e−

r2

2πα′ tZ(t), (2.1)

where r is the distance between the D-branes. Z(t) is the partition function of the
stretched open string with the modulus (Schwinger paramter) t, where the factor

e−
r2

2πα′ t due to the string tension is extracted. In many known examples, the r-

dependence only appears through e−
r2

2πα′ t, and Z(t) is r-independent. The method

3

Z(t):    partition function of open string
(η(t), θab(t)) in a simple case, but generally difficult to obtain
because the open string is not exactly quantized.
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In field theory, the stringy calculation is interpreted as 
a sum of one-loop amplitudes of infinitely many fields

massless (SYM) + massive fields  v4

r7−p

V ∼ 1

2

∞∑

N=1

(−1)F tr log(p2 +m2
N) =

∞∑

N=1

(−1)F

64π2

(
Λ2m2

N +m4
N logm2

N/Λ
2
)

m2
N = f(mstr, r

2,ω2) ∼ (Nmstr)
2 +O(r2,ω2)

1

Supersymmetry at ω= 0 → V(r) ~ #$%$
�Massless states (SYM) may dominantly contribute to V(r).           
�Infinitely many massive states can also contribute to V(r) = ∑#$%$

How to calculate the stringy threshold corrections ?
= hierarchy problem

v4

r7−p

V ∼ 1

2

∞∑

N=0

(−1)FdNtr log(p
2 +m2

N) =
∞∑

N=0

dN
(−1)F

64π2

(
Λ2m2

N +m4
N logm2

N/Λ
2
)

m2
N = f(mstr, r

2,ω2) ∼ (Nmstr)
2 +O(r2,ω2)

ω =
L2

2T3r2

1

v4

r7−p

V ∼ 1

2

∞∑

N=0

(−1)FdNtr log(p
2 +m2

N) =
∞∑

N=0

dN
(−1)F

64π2

(
Λ2m2

N +m4
N logm2

N/Λ
2
)

m2
N = f(mstr, r

2,ω2) ∼ (Nmstr)
2 +O(r2,ω2)

ω =
L2

2T3r2

1
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[3] A new method to calculate the 
effective potential in D-brane models

N.Kitazawa, H. Ohta, 
T. Suyama, SI (19)

"Partial Modular Transformation"

one-loop open string amplitude
= closed string exchange 

In the revolving boundary conditions,
we can not exactly calculate it.

Partial sum of open strings (SYM) and closed strings (SUGRA)
�But  no double counting.
� And numerically, with less than a few % accuracy 
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Schwinger parameter of open string amplitude 

! = 0,∞ ⇒ ! = 0,1 + 1,∞ ⇒ ) = 1,∞ + ! = [1,∞]
open UV     open IR        closed IR       open IR

approximation

with 3% accuracy                

SUGRA    +     SYM

Potential ,(.) ≒ sum of SYM and SUGRA with UV cutoff

Free from double counting due to the appropriate UV cut-off at t=s=1.

"Partial Modular Transformation"     
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Interaction potential between revolving !3-branes

Two parallel !3# are revolving 
around each other in a transverse plane

SYM with cutoff at $ = 1 +  SUGRA with cutoff at # = 1
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(a) SU(N) SYM calculations in background field gauge

background field gauge such that

(Euclidean time τ )

N=2
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(b) SUGRA calculations

Interactions between Dp-brane and SUGRA fields are obtained from DBI +CS 

Propagators 

Potential is given by
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Potential between Revolving D-branes:   result

This exactly coincides with the effective potential for two Dp-branes moving with
the relative velocity 2v and the impact parameter 2r [Pol II, (13.5.7)].

We also note that the potential from supergravity calculation is proportional
to v4/r7−p. The behavior at p = 0 is well-known in the calculation of D0 brane
scattering in the BFSS matrix theory. As mentioned at the end of sec 3.3, the same
potential can be reproduced from the SYM calculation if we take the UV cutoff to
infinity Λ → ∞. In our calculation, Λ needs to be fixed at an appropriate value in
order to avoid the double counting, the behavior at large r is generated only by the
supergravity calculation.

The potential is proportional to −ω4rp−3, and very weak attractive potential.
There is no chance that the system forms a bound state. Indeed, if angular mo-
mentum of the revolving D-brane is conserved, ω is proportional to 1/r2. Then the
potential is attractive V ∝ −rp−11, but cannot balance with the repulsive centrifugal
potential ∼ 1/r2.

Finally, the most important comment is that the ω2 (or equivalently v2) terms
are cancelled between bosons and fermions in the potential (4.17). These terms are
allowed from the dimensional analysis, but cancelled because of the supersymmetry
in the bulk. This fact has an important consequence when we calculate the threshold
corrections from massive open string modes to the effective potential at small r.

5 Behavior of the potential Ṽ (r) = Ṽo(r) + Ṽc(r)

We now investigate the behavior of the effective potential Ṽ (r) = Ṽo(r) + Ṽc(r)
obtained in the previous sections. In this section, we investigate the potential when
the angular frequency is small compared to the string scale, ω ≪ mstr and the
pair of Dp-branes are revolving slowly. We also mainly focus on the p = 3 case
with phenomenological applications in mind. D0 branes are also interesting from
the BFSS matrix theory point of view, but we leave its detailed analysis for future
investigations.

The contributions from open massless modes to the potential in Euclidean signa-
ture DOKODE KAISEKISETUZOKU? is given by a sum of these two contributions,

Ṽo,B = −
∫ ∞

Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−t(k2+4r2)

×

⎡

⎣6 + 2e
−tω2+t 8(rω)2

k2+4r2 cosh

⎛

⎝t

√

4ω2k20 +

(
8(rω)2

k2 + 4r2

)2
⎞

⎠

⎤

⎦

Ṽo,F = 4

∫ ∞

Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−t(k2+4r2)e−t·ω

2

4 · 2 cosh
(
t
√
ω2k20 + 4(rω)2

)

(5.1)

where the UV cutoff should be chosen as Λ−2 = 2πα′. They are complicated integrals
and the behavior at small r and ω is nontrivial. We first look at some general
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by a sum of contributions of supergravity fields:

Ṽc = −2κ210

∫
dp+1ζ

∫
dp+1ζ̃∆(X − X̃)

(
FΦ(X, X̃) + Fg(X, X̃) + FC(X, X̃)

)
,

(4.12)
where

FΦ(X, X̃) =

(
p− 3

4

)2

T 2
p

√
− det η̂αβ(X)

√
− det η̂γδ(X̃), (4.13)

Fg(X, X̃) = T 2
p

√
− det η̂αβ(X)

√
− det η̂γδ(X̃)

×
(
−(p+ 1)2

16
+

1

2
η̂αβ(X)(∂βX · ∂δX̃)η̂δγ(X̃)(∂γX̃ · ∂αX)

)
,

(4.14)

FC(X, X̃) = T 2
p det(∂αX · ∂βX̃). (4.15)

FΦ(X, X̃), Fg(X, X̃), FC(X, X̃) are contributions from dilaton, graviton, and RR-
fields respectively. The details of the calculation are given in Appendix A.

4.4 SUGRA potential in Revolving Dp-branes

In the following, we apply the result (4.12) for a general Dp-brane motion to the
revolving Dp-branes. The embedding functions Xµ and X̃µ for the revolving Dp-
branes are given by

Xα = ζα, X8 = r cosωζ0, X9 = r sinωζ0,

X̃α = ζ̃α, X̃8 = −r cosωζ̃0, X̃9 = −r sinωζ̃0.
(4.16)

Inserting these functions into (4.12) and performing most of the integrations, we
obtain

Ṽc(r) = −κ210T 2
p Vp+1(4π)

− 10−p
2

v4

1− v2

∫ ∞

Λ̃−2
ds s−

10−p
2

×
∫

dζ exp

[
− 1

4s

(
ζ2 + 2r2(1 + cosωζ)

)]
(1 + cosωζ)2, (4.17)

where Λ̃ is a cut-off.
Following the recipe in sec 2.4 , we can fix the cut-off Λ̃ so that Ṽc(r) gives

the correct threshold corrections to Ṽo(r). The suppression factor due to the string
tension in the above integrand is given by e−r2/s. Then the cut-off is given by s = 1 if
s is rescaled such that this factor becomes e−(2r)2/(2πα′s). This amounts to choosing
Λ̃−2 = πα′/2.

Several comments are in order. First, let us investigate the large r behavior of
the potential with v = rω fixed as a small value. In the limit Λ̃ → ∞, we obtain

Ṽc(r) = −(4π2α′)3−p(4π)−
7−p
2 Γ( 7−p

2 )
v4

r7−p
+O(v6). (4.18)

17

SYM part = effective potential from massless modes

SUGRA part = threshold corrections from stringy massive modes

δm2
H =

g2

16π2

(
Λ2 +M2 log(Λ/M)

)

η(it)−24 =
∞∑

n=−1

dne
−2πnt

d−1 = 1, d0 = 24, d1 = 324... x = 2nπ + R2

2πα′

φ1 = φ2 = φ3 = φ, φ4 = 0 ω = L
T3r2

Λ = ms

1

δm2
H =

g2

16π2

(
Λ2 +M2 log(Λ/M)

)

η(it)−24 =
∞∑

n=−1

dne
−2πnt

d−1 = 1, d0 = 24, d1 = 324... x = 2nπ + R2

2πα′

φ1 = φ2 = φ3 = φ, φ4 = 0 ω = L
T3r2

Λ = ms Λ̃ = 2ms

1
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by a sum of contributions of supergravity fields:

Ṽc = −2κ210

∫
dp+1ζ

∫
dp+1ζ̃∆(X − X̃)

(
FΦ(X, X̃) + Fg(X, X̃) + FC(X, X̃)

)
,

(4.12)
where

FΦ(X, X̃) =

(
p− 3

4

)2

T 2
p

√
− det η̂αβ(X)

√
− det η̂γδ(X̃), (4.13)

Fg(X, X̃) = T 2
p

√
− det η̂αβ(X)

√
− det η̂γδ(X̃)

×
(
−(p+ 1)2

16
+

1

2
η̂αβ(X)(∂βX · ∂δX̃)η̂δγ(X̃)(∂γX̃ · ∂αX)

)
,

(4.14)

FC(X, X̃) = T 2
p det(∂αX · ∂βX̃). (4.15)

FΦ(X, X̃), Fg(X, X̃), FC(X, X̃) are contributions from dilaton, graviton, and RR-
fields respectively. The details of the calculation are given in Appendix A.

4.4 SUGRA potential in Revolving Dp-branes

In the following, we apply the result (4.12) for a general Dp-brane motion to the
revolving Dp-branes. The embedding functions Xµ and X̃µ for the revolving Dp-
branes are given by

Xα = ζα, X8 = r cosωζ0, X9 = r sinωζ0,

X̃α = ζ̃α, X̃8 = −r cosωζ̃0, X̃9 = −r sinωζ̃0.
(4.16)

Inserting these functions into (4.12) and performing most of the integrations, we
obtain

Ṽc(r) = −κ210T 2
p Vp+1(4π)

− 10−p
2

v4

1− v2

∫ ∞

Λ̃−2
ds s−

10−p
2

×
∫

dζ exp

[
− 1

4s

(
ζ2 + 2r2(1 + cosωζ)

)]
(1 + cosωζ)2, (4.17)

where Λ̃ is a cut-off.
Following the recipe in sec 2.4 , we can fix the cut-off Λ̃ so that Ṽc(r) gives

the correct threshold corrections to Ṽo(r). The suppression factor due to the string
tension in the above integrand is given by e−r2/s. Then the cut-off is given by s = 1 if
s is rescaled such that this factor becomes e−(2r)2/(2πα′s). This amounts to choosing
Λ̃−2 = πα′/2.

Several comments are in order. First, let us investigate the large r behavior of
the potential with v = rω fixed as a small value. In the limit Λ̃ → ∞, we obtain

Ṽc(r) = −(4π2α′)3−p(4π)−
7−p
2 Γ( 7−p

2 )
v4

r7−p
+O(v6). (4.18)

17
Newton potential

Minimum appears !

The dominant contribution to V(r) at !~0 comes from SYM.

ω sets the susy breaking scale.

D3 (p=3)
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Stringy threshold corrections to Higgs potential    

∑"#$"#"%& '()&* "# (+&# *%,"#- ./0/ ⇒ SUGRA calculation 

ω : SUSY breaking scale in SUGRA

Stringy threshold corrections to Higgs mass are highly suppressed.

Naive expectation: V(r) ~ (large coefficient) × ./0/

at small r

v4

r7−p

V ∼ 1

2

∞∑

N=0

(−1)FdNtr log(p
2 +m2

N) =
∞∑

N=0

dN
(−1)F

64π2

(
Λ2m2

N +m4
N logm2

N/Λ
2
)

m2
N = f(mstr, r

2,ω2) ∼ (Nmstr)
2 +O(r2,ω2)

ω =
L2

2T3r2

1

3(0) 67(6*%,, 0, ω)

The coefficient of ω/0/ is cancelled among infinite modes.

But the result is different! 
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Comment 1.  A possibility of a bound state

At large r, it is approximated by Ṽc(r) = −ω4/16π2 = −v4/16π2r4 and repro-
duces the Newton-like potential for D3 branes in D=10. At small r, it becomes
ω4r2Λ̃2/16π2, which is suppressed by a factor (ω/mstr)2 compared to a naive ex-
pected behavior ω2r2. The absence of large threshold corrections to the moduli
mass has an interesting implication to the hierarchy problem of the Higgs potential.

In the region r < ω, we can perform a different approximation of the integral for
Ṽo(r) to estimate the shape of the potential. Details of the calculations are given in
the appendix C, but the leading order behavior is the same as the above ω expansion
and given by

Ṽo(r) ∼ −ω
2r2

π2
. (5.8)

Thus as far as the leading behavior is concerned, (5.6) seems to give a good approx-
imation at small r.

Now we plot the total potential, Ṽ = Ṽo+ Ṽc, including both of the contributions
from the SYM and the threshold corrections from SUGRA in in Figure ( ). PLOT
ha w-exp denaku integral sonomama yattahouga yoi, soreto w-exp kurabetemo yoiga

5.2 Can the revolving D3-branes have a bound state?

Based on these expressions, we can give a rough argument for whether there could
exist a bound state of D3-branes in the potential Ṽ (r). In the argument of a bound
state, we assume that the angular momentum is conserved. Then we take into
account the effect of the centrifugal potential for the D3-branes. This implies that
we need to analyze the behavior of the potential with fixing the angular momentum
L of the D3-branes, instead of ω. Therefore the potential we need to study is given
by

U(r) :=
L2

4T3r2
+ Ṽ (r) (5.9)

with ω replaced with L2/2T3r2. The relative distance and reduced mass for a unit
volume is given by 2r and T3. Since we are based on the one-loop string calculations,
the string coupling constant should be smaller than 1. In such a situation, the
potential U(r) behaves like in Figure ( ), and there is no minimum because the
centrifugal potential is more dominant than the induced attractive force by one-loop
calculations. It excludes a possibility of forming a bound state for revolving two D3
branes.

The situation is modified if we consider a stack of N D-branes revolving around
each other. Suppose that each of the revolving D3-branes are replaced with N D3-
branes. Then, Ṽ (r) is multiplies by N2 since there are N2 open strings stretched
between the two sets of D3-branes. On the other hand, the centrifugal potential is
multiplied simply by N . Therefore, the potential U(r) will be modified as

UN (r) :=
NL2

4T3r2
+N2Ṽ (r). (5.10)

For a sufficiently large N (e.g., N is larger than 5), the behavior of UN (r) changes
to the figure drawn in Figure ( ), which is qualitatively different from U(r). As long
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Centrifugal potential

L: angular momentum for unit volume of D3-brane 

Potential = induced potential + centrifugal potential

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

U(r)
no bound states exist.

If N-stack of D3-branes are revolving 
together, 

At large r, it is approximated by Ṽc(r) = −ω4/16π2 = −v4/16π2r4 and repro-
duces the Newton-like potential for D3 branes in D=10. At small r, it becomes
ω4r2Λ̃2/16π2, which is suppressed by a factor (ω/mstr)2 compared to a naive ex-
pected behavior ω2r2. The absence of large threshold corrections to the moduli
mass has an interesting implication to the hierarchy problem of the Higgs potential.

In the region r < ω, we can perform a different approximation of the integral for
Ṽo(r) to estimate the shape of the potential. Details of the calculations are given in
the appendix C, but the leading order behavior is the same as the above ω expansion
and given by

Ṽo(r) ∼ −ω
2r2

π2
. (5.8)

Thus as far as the leading behavior is concerned, (5.6) seems to give a good approx-
imation at small r.

Now we plot the total potential, Ṽ = Ṽo+ Ṽc, including both of the contributions
from the SYM and the threshold corrections from SUGRA in in Figure ( ). PLOT
ha w-exp denaku integral sonomama yattahouga yoi, soreto w-exp kurabetemo yoiga

5.2 Can the revolving D3-branes have a bound state?

Based on these expressions, we can give a rough argument for whether there could
exist a bound state of D3-branes in the potential Ṽ (r). In the argument of a bound
state, we assume that the angular momentum is conserved. Then we take into
account the effect of the centrifugal potential for the D3-branes. This implies that
we need to analyze the behavior of the potential with fixing the angular momentum
L of the D3-branes, instead of ω. Therefore the potential we need to study is given
by

U(r) :=
L2

4T3r2
+ Ṽ (r) (5.9)

with ω replaced with L2/2T3r2. The relative distance and reduced mass for a unit
volume is given by 2r and T3. Since we are based on the one-loop string calculations,
the string coupling constant should be smaller than 1. In such a situation, the
potential U(r) behaves like in Figure ( ), and there is no minimum because the
centrifugal potential is more dominant than the induced attractive force by one-loop
calculations. It excludes a possibility of forming a bound state for revolving two D3
branes.

The situation is modified if we consider a stack of N D-branes revolving around
each other. Suppose that each of the revolving D3-branes are replaced with N D3-
branes. Then, Ṽ (r) is multiplies by N2 since there are N2 open strings stretched
between the two sets of D3-branes. On the other hand, the centrifugal potential is
multiplied simply by N . Therefore, the potential U(r) will be modified as

UN (r) :=
NL2

4T3r2
+N2Ṽ (r). (5.10)

For a sufficiently large N (e.g., N is larger than 5), the behavior of UN (r) changes
to the figure drawn in Figure ( ), which is qualitatively different from U(r). As long
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Comment 2.  Lorentz violation in the Higgs sector
Experimental test of the geometric scenario

Lorentz violation occurs only in the Higgs sector
(Coriolis force for Higgs field since it is geometrical.) 
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N. Kitazawa, SI   ('18)
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ω0 < 0.1 GeV



Summary 

Higgs physics
@ LHC + ILC + ...

String theory
space-time physics

early universe

naturalness
stability
Yukawa couplings

Dark matter
Baryogenesis
Inflation, PBH, ...

moduli  = geometry
SUSY breaking
Dark energy

QCD-induced EW PT

Lorentz violation in Higgs
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Hierarchy problem is a key idea to go beyond SM
in particle physics,  cosmology,  string theory

From string theory, there are two important issues related to 
hierarchy problem. 

1.  embedding of EFT in superstring
2.  calculation of stringy threshold corrections

à "partial modular transformation"   
Mass terms of Higgs may not be generated  
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Thank you for your attention

continued to the next talk by Takao Suyama


