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High temperature limit of CFT on S?~! x R
Equilibrium thermal partition functions of CFTs at high T.

Euclidean CFTon SP™! x Sz, at p =T~ < r7%.
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Seek for higher dim’l version of 2d Cardy formula: Z(r) ~ Tr [e27700] mic
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Nexp[ } at 7 — 0"
Two contributions to the Cardy “free energy” logZ (5, ...).
0-mode path integral on S?~1:

Absent in standard partition function (conformal mass, antiperiodic b.c. for fermion)

May exist in SUSY indices, but cannot contribute to the divergent leading part at f — 0.
“Heavy” Kaluza-Klein (KK) modes on S*:

Divergent contributions to log Z come from these KK modes at § — 0.

KK modes — effective action of background fields (chemical potentials) on S?~1.
E.g. metric on (squashed) S?~1, background vector fields, scalars, ...

3 special vector & scalar in KK reduction: gravi-photon & dilaton

dst, = ds7,_, + e *P(dr +a)* T~7+B , Pfe® ~radius of S*



Effective action & derivative expansion

In CFT, small 8 expansion = r~! expansion = derivative expansion on SP~1,

co-tower of derivative expansion. Most coefficients depend on coupling constants.
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However, Chern-Simons terms on S?~1 (for even D) are coupling independent.
‘t Hooft anomalies of global symmetries determine them. (More later)

They are sub-leading terms in the normal thermal free energy.

kB* /a Ada+ k871 [|AHA da + Ky /.AI AdAT + ...
. AW _

background gauge fields (~ chemical potential) for global symmetries

Strong-coupling large N CFT w/ AdS dual: The expansion should constrain large

AdS black hole’s thermodynamics (at large Hawking temperature).



Example: Kerr black holes in AdS.

Background fields on S3: chemical potentials 8, w,, w, for E, J1,/,
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Leading terms in derivative expansion. (Assume Q = w; = w-, for simplicity.)
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Extremize in ,Q & solve for E, ], S. Fitting coefficients, one reproduces all divergent parts

of E,], S carried by Kerr black holes. (Here, Q = —af.) analysis by Nahmgoong (2018)
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Related to fluid-gravity calculus of large BH’s. [Bhattacharyya,Lahiri,Loganayagam,Minwalla] 4




High T expansion of indices: expectation

So far, we constrained high T partition functions (with unknowns 4,, 4,, A5...).

Similar calculus for an index: This method is much more powerful.
Naturally expect CS terms may determine the divergent part (e.g. coupling-independent).

Index: For 4d SCFTs on S3 x S, index is defined by

Z(wy,wo) =Tr [e_-ﬁ(E_%R_Jl_Jg)e_%ARe_“lJl_WJ?
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£ is merely a regulator of the index. E.g. easy to compute at f - 07.
Since leading term is 0(B?), B — 0 is a fake thermal circle parameter.

True derivative expansion parameters are |w;| < 1.
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Some reordering of naive derivative expansion is inevitable.



Background field set-up
The background fields for the index:

same metric, dilaton, gravi-photon as before (up to small shifts of w; by £)

Background U(1)y & other flavor symmetries’ gauge fields:
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CS coefficients from anomalies

Knowing CS coefficients, one can determine the Cardy free energy.

There turn out to be two types of CS terms.

Gauge non-invariant CS terms
4d effective action S.¢r = —log Z respects ‘t Hooft anomaly: §.Seie~€ FAF + ...
This should be reflected in the 3d background fields’ effective action.

It demands the existence of certain gauge non-invariant CS terms.

[Banerjee, Bhattacharya, Bhattacharyya, Jain, Minwalla, Sharma] (2012)
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Gauge invariant CS terms: More elaborate arguments by [Jensen, Loganayagam, Yarom]

(2013) determine them all from anomalies. (See also [Di Pietro, Komargodski] (2014).)

Sy ~ —i(a — ¢) / ki AL A da
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[C;k, k; are coefficients of the cubic anomaly polynomial in a suitable normalization.]



Cardy free energy & BH'’s

Plugging in our background fields, one obtains the Cardy free energy.
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log Z ~ (5a — 3¢)

If one only turns on the chemical potential for the U(1) superconformal R-symmetry, one

obtains a universal formula in terms of two central charges.
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It is known that 3¢ — 2a > 0 is always met by interacting SCFTs. [Hofman, Maldacena]
Legendre transformation of this free energy is a bit subtle. The proper way to understand it
has been clarified only recently. [Choi, J. Kim, SK, Nahmgoong] (2018) [Choi, SK] (2019)

Making this Legendre transformation at large /;,/, > a, c, one always obtains a positive

macroscopic entropy at 3¢ — 2a > 0. [J. Kim, SK, Song] (2019)

The entropy obtained this way precisely agrees with the Bekenstein-Hawking

entropy of BPS black holes in AdSs. 3



Conclusion & remarks

| jJust used anomalies & some SUSY to derive the Cardy index.

The method applies to non-Lagrangian SCFTs in even dimensions.
4d non-Lagrangian theories: Argyres-Douglas, Minahan-Nemeschansky, “class S, ...
This method (effective action of 1d background fields) also reproduces the well-known 2d
Cardy formula [Joonho Kim, Kimyeong Lee, Jaemo Park] (2018)

Tic

Z(7) ~ Tr [¢"™T0] ~ exp [E} at 7 — 107

6d SCFTs & AdS, black holes: — See the talk by June Nahmgoong tomorrow.

Anomalies constrain other coupling-independent observables in CFT.

Rather abstract “d.o.f.” measured by anomaly is related to the high T d.o.f.

Today'’s talk is only a small part of the recent advances in BPS AdS black holes.

Counted BPS AdSp.,, black holes from SCFT, Cardy indices for all D = 3,4,5,6.
[Choi, J. Kim, SK, Nahmgoong] [Choi, SK] [J. Kim, SK, Song] [Nahmgoong] [Choi, Hwang, SK] ......



