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Introduction



Motivations

Gravity in higher dimensions and AdS spacetime

Non-uniqueness and various black hole solutions

Instabilities and dynamics of such black holes



Superradiance
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Rotational superradiance: \Waves can be
amplified by a rotating BH.

(cf. charged superradiance)



Superradiant instability
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In AdS, the repetition of superradiance gives rise
to an instability. [Kunduri-Lucietti-Reall



Backreaction
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A new solution with less symmetries will bifurcate

from the onset of the instability. [Kunduri-Lucietti-Reall]



Black resonators

Black holes with a single Killing vector field:
black resonators

Oscar J. C. Dias,! * Jorge E. Santos,> T and Benson Way?:*
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We numerically construct asymptotically anti-de Sitter (AdS) black holes in four dimensions that
contain only a single Killing vector field. These solutions, which we coin black resonators, link

arXiv:1505.04793 [hep-th]

Time-periodic black holes were constructed in
4D AdS and named black resonators.




This talk

Black resonators were first obtained by solving

PDEs in 4D AdS. [Dias-Santos-Way]
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In 5 dimensions, we can obtain a class of

black resonators by solving ODEs. TI-Murata]



Geons

- coined by Wheeler as
"gravitational and electromagnetic entities”

- horizonless

- appear from normal modes in global AdS

Black resonators smoothly reduce to geons in
the zero-size limit of the horizon.
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Myers-Perry AdS BH with

equal angular momenta



Setup

5D pure Einstein gravity (AdS radius = 1)
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Asymptotically global AdS (RxS3 boundary at r=e)
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Isometries of 5D black holes

Schwarzschild: R; x SO(4) = R; x SU(2) x SU(2)

ds® = —F(r)dt* 1 - - r2dQ);
F(r)

General Myers-Perry: R, x U(1) x U(1)

Myers-Perry with equal angular momenta:
R xU(2)=R; xU(1) x SU(2)

= WIll be broken to a helical one



MPAdSs with equal angular momenta

ds? = —F(r)dr* A - — o1 + 03 + B(r)(os + 2H(r)dr)"]
S? S fiber

SU(2) invariant 1-forms (8,¢,x: Euler angles of S3)

o1 = — sin xydf + cos x sin 0d¢
09 = cosxdf + sin y sin 6dg¢
o3 = dx + cos 0do

U(1) isometry: X — X +¢
(Note that 0% + o5 = df* + sin*0d¢?*)



Boundary condition of H(r) and frames

Non-rotating frame | Rotating frame
Boundary H(c0) =0 H(oc0) =Q
Horizon H(rp) = —Q H(rp) =0

Rotating frame at infinity (t,X): The AdS boundary
is rotating with ), and the horizon does not.

Non-rotating frame at infinity (t,): vice versa.

Transformation: t =7, ¥ =y + 207



Null generator of horizon

K:(?T :8t—|—98¢/2

Rotating frame Non-rotating frame
(horizon is static) (horizon rotates)



Helical Killing vector

1

Rotating frame Non-rotating frame
(rotating boundary) (static boundary)

Helical Killing vector: K = 0, = 0; + 0,2



Superradiant instability



U(1)-breaking perturbation

To break the U(1), we unbalance o7 + 05.

Perturbation in the rotating frame

9
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In the non-rotating frame, this is time periodic.
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Onset of superradiant instability

As Q) is increased, the perturbation becomes unstable.

New solutions bifurcate from the onset of instabilities.
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Black resonators and geons



Cohomogeneity-1 metric ansatz

In the rotating frame, we use

dr?
(14 72)g(r)

|29 + 3 + B (os + 20(r)dr)?

ds® = — (1 4+ 7r2) f(r)dr* A

This is time periodic in the non-rotating frame.
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Isometries: . x SU(2)

helical
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Einstein equations
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Einstein equations

Coupled ODEs for (f',g',h",a"","").

Boundary conditions:
1) Asymptotically AdS with h(r=c0)=Q
2) Geon: regular at r=0

Black resonator: horizon at r=rn




(E,J) diagram for MPAdSs
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(E,J) diagram for black resonators

Black resonators extend to the (E,J) region beyond
the limit of extreme MPAdS.
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Black resonators have higher entropy than MPAdS.

An unstable MPAdS can evolve into a black resonator.



Implications to AdS/CFT

The black resonators obtained so far have Q>1.
But, in fact, BH with O>1 are small BH.
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Are there (unstable) states dual to black resonators?



Ongoing results



Instability of black resonators

Theorem: a BH with (O>1 is always unstable
(against some perturbations).
[Green-Hollands-Ishibashi-Wald]

Black resonator solutions (obtained so far) have
()>1. Hence, they must be unstable.

The cohomogeneity-1 metric is useful to study
perturbations of black resonators.



Instability of black resonators

Scalar, Maxwell, and gravitational perturbations:

Vep =0 ,
V2h + 2R, 6h?7 =0

VFE,, =0

We find instabilities in general perturbations which

break the SU(2) isometry.
[TI-Murata-Santos-Way, to appear]

O =e T N Dk (r)Y,,(Qs)
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Adding matter field

In the presence of a Maxwell field, we can obtain
(uncharged) black resonators dressed with photons.

. [TI-Murata, to appear]
dr

ds* =— (14+r°)f(r)dr* 4 AT g0
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Conclusion

We constructed black resonators and geons with
a cohomogeneity-1 metric in 5D AdS.

They appear from the superradiant instability of
MPAdS BH with equal angular momenta.

They have helical and SU(2) isometries.

This metric can be used to study properties of
black resonators such as instability.



