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Motivation

Gravity theories are with dimensionful couplings:
non-renormalizable, UV divergent at some loop order

Can supersymmetry help make gravity UV finite?

More symmetries, more restriction on counter terms,
better UV behavior
= maximal SUSY+ gravity:

4D W/ =8 SUGRA a perturbatively UV-finite theory?

Some signs: UV-finiteness at L-loop 4-point, L < 3.
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Motivation

critical dimension: characterizes the UV behavior
the dimension where the UV div. first appears

e J(dec)Lf‘x, b

leading L
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KLT relation: tree level scattering amplitudes

(N =4 SYM)? ~ (N =8 SUGRA)

all loops UV finite ol loops UV finite



Motivation

* the next target:
5-loop 4-point scattering amplitude of /' = 8 SUGRA

* check the UV behavior: explicit computation
Lagrangian formalism (almost undoable, hard)

On-shell methods (more efficient, no so hard)



On shell methods
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| Modern on-shell approach: | | Lagrangian formalism: |
n info. | compute case by case
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On shell methods

tree amplitudes: symmetries + analyticity

loop amplitudes: tree amp. + unitarity
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On shell methods
Unitarity Cut

S=111i] SST=1

| the product
| of sub-amplitudes.

Generalized Unit arity Cut Bern, Dixon, Dunbar, Kosower

results from i€ part of propagators:
taking imaginary part is taking the cuts,
(putting the relevant propagators on-shell)

recursively apply cuts to a loop amplitude,
(cuts on a loop amplitude)=(a product of tree amplitudes)



On shell methods

guiding principle:
a correct loop amp. needs
to satisty all unitarity cuts



On shell methods

How to reconstruct a loop integral:

Design an ansatz,
the ansatz is required to satisfy all unitarity cuts.

The size of ansatz for SUGRA is usually
too large to be controlled.

Color-kinematic duality is helpful.

Tree level: KLT < color-kinematic duality



On shell methods

Idea: loop version of KLT
two copies of /' =4 SYM give /' = 8 SUGRA

spectrum: (/' =4 SYM) ® (/' =4 SYM) = (/' = 8 SUGRA)

e the size of ansatz for / = 4 is more accessible,
less combinatorial possibilities.

[cubic vertices] ,_, =M, [cubic vertices] ,_g = M?

|propagators] ,_, = [propagators] ,_g

» represent the ansatz by cubic diagrams, each

cubic vertex is a color factor f ..



On shell methods

use cubic diagrams to represent the basis of our loop integrand

parameters determined by unitarity cuts
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Color-Kinematic Duality

Bern, Carrasco, Johansso n
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. For a given diagram with color factor ¢; = Hq. =

there must exist ¢; and ¢; such that ¢; + ¢; + ¢, = O by
Jacobi identity

e If we can find a representation, where ns satisty the
same algebraic egs. as ¢;’s, we can get
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Color-Kinematic Duality

color-kinematic duality

A/V=4 Lol )M/V=8

works in L-loop, L < 5

ck rep. is still unavailable for L = 5



Generalized Double Copy

No more ansatz...
For an arbitrary known 4/ =4 SYM rep.:

Ar== Y def...dffﬂ

P

l l
. a given diagram with color factor ¢; = I I it
there must exist ¢; and ¢; such that ¢; + ¢; + ¢, = 0
by Jacobi identity, but, in general, n; + n;, + ;. # 0.
o nl -I— n] + nk E J, On a CUt Bern, WMC, Carrasco, Johansson, Roiban, PRL
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Systematic organization of cuts

max-cut max-cut and Nmax-cut
automatically works
:{gx e
Nlmax-cut | x
g / just works
N2max-cut no additional ey
2 contact term needed
ﬁ works by adding a local contact term
N3max-cut

18Y



Systematic organization of cuts

max-cut

the two non-local terms include
some duplicated information

Nlmax-cut

NZ2max-cut

N3max-cut




Contact Term Approach

We need to work level by level in order to make every contact term local
off-shell

N2 contact terms: [ §|cut —(NZmax-ecut-1 )= 0l o) I g‘cut =

complete result satisfies all max-cut, Nlmax-cut, N2max-cut: P» = I, +Z il

. ~ off-shell
s Nicontael terms: Il = (DNemaxecut-i ) -( Polewr ) Lilew —  L;

* complete result satisfies all max-cut,..., N®max-cut: P3 = I, +>_I . el .

o For N=8 5-loop, the result is

Bern, WMC, Carrasco, Edison, Johansson, o No. Diagrams No. Nonvanishing Diagrams
Parra-Martine, Roiban, Zeng 0 7= 649
1 2,781 0
2 9,007 1,306
3 17,479 2,457
4 2295 2470
5 20,657 15355
6 13,071 256

total 86,678 8,473




Five-loop results

*  check N7max-cuts and N8max-cuts to make sure everything is correct

. small external momenta expansion to extract UV divergence

see Beneke, Vladimirov,
Th 1 Marcus, Sagnotti, Smirnov
| € resu tS Bern, WMC, Carrasco, Edison, Johansson, Parra-Martine, Roiban, Zeng
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Main Results

the critical dimensions start to be different between N=8 SUGRA
and N=4 SYM at five-loop, but the SUGRA is still finite at D = 4.

The result suggests the existence of DSR* operator at D = 24/5.
D®R* operator is responsible for 7-loop div. at D = 4.
UV-divergence at 7-loop? need to compute 6-loop first.

Some consistent patterns for vacuum diagrams from higher loop
to lower loop, useful for obtaining higher loop result?






