Gravity and linearized Schwarzschild Solution in the IKKT Matrix Model

Harold Steinacker

Department of Physics, University of Vienna

NCTS-Kyoto Joint Meeting, september 2019

how to formulate quantum theory of spacetime & gravity?

guidelines:

Matrix models

- simple, constructive
- gauge theory (Minkowski signature!)
- finite dof per volume (Planck scale!)
 - → underlying d.o.f. non-geometric
- GR established only in IR regime space-time & gravity may emerge from other d.o.f.

```
(cf. Navier-Stokes)
```


simple

Motivation

describe dynamical (noncomm.) spaces, gauge theory

$$X^a o U^{-1} X^a U$$

gravity

- well suited for quantization: $\int dX e^{-S[X]}$
 - generic models: serious UV/IR mixing problem
 - <u>preferred</u> model: maximal SUSY = IKKT model shares features of string theory, cut the "landscape"
- gravity?

summary of results to be discussed:

- (3+1)-dim. covariant quantum space-time solution (FRW cosmology, Big Bounce)
- tower of higher-spin modes, truncated at n.
 - \rightarrow higher-spin gauge theory, all d.o.f. required for gravity no ghosts!
- propagation governed by universal dynamical metric (Lorentz invar. only partially manifest)
- metric perturbations → massless graviton & scalar
- linearized Schwarzschild solution

HS, arXiv:1606.00769 HS, arXiv:1710.11495

M. Sperling, HS arXiv:1806.05907M. Sperling, HS arXiv:1901.03522

HS arXiv:1905.07255, arXiv:1909.xxxxx

Motivation

outline:

- the IKKT matrix model & NC gauge theory
- 4D covariant quantum spaces: fuzzy H_n^4 , cosmological space-time $\mathcal{M}_n^{3,1}$
- fluctuations → higher spin gauge theory
- metric perturbations, lin. Schwarzschild

The IKKT model

Motivation

IKKT or IIB model

Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

$$\begin{split} S[Y,\Psi] &= -\textit{Tr}\left([Y^a,Y^b][Y^{a'},Y^{b'}]\eta_{aa'}\eta_{bb'} \,+\, \textit{m}^2\,Y^aY_a \,+\, \bar{\Psi}\gamma_a[Y^a,\Psi]\right) \\ & Y^a = Y^{a\dagger} \,\in\, \textit{Mat}(N,\mathbb{C})\,, \qquad a = 0,...,9, \qquad N \,\to \infty \\ & \text{gauge invariance} \,\,Y^a \to \textit{U}Y^a\textit{U}^{-1}, \,\, \textit{SO}(9,1), \,\, \frac{\text{SUSY}}{} \end{split}$$

- quantized Schild action for IIB superstring
- reduction of 10D SYM to point, N large
- equations of motion:

$$\Box Y^a + m^2 Y^a = 0, \qquad \Box \equiv n_{ab}[Y^a, [Y^b, .]]$$

• quantization: $Z = \int dY d\Psi e^{iS[Y]}$, SUSY essential

strategy:

Motivation

- look for solutions → space(time) generically non-commutative
- fluctuations → gauge theory, dynamical geometry, gravity ?!
- matrix integral = (Feynman) path integral, incl. geometry
 (no holography)

relation with string theory:

- solutions = branes
- quantum effects (1-loop) → interactions consistent with IIB (etc.)
 (IKKT, cf. BFSS)

numerical studies possible & underway

(Nishimura, Tsuchiya 1904.05919,

Kim, Nishimura, Tsuchiya arXiv:1108.1540 ff)

<u>class of solutions:</u> fuzzy spaces = quantized symplectic manifolds

$$X^a \sim x^a$$
: $\mathcal{M} \hookrightarrow \mathbb{R}^{9,1}$

$$[X^a, X^b] \sim \{x^a, x^b\} = i\theta^{ab}(x)$$
 ... (quantized) Poisson bracket

algebra of functions on NC (=fuzzy) space: $End(\mathcal{H})$

• Moyal-Weyl quantum plane \mathbb{R}^4_θ :

$$[X^a, X^b] = i\theta^{ab} \mathbf{1}$$

quantized symplectic space (\mathbb{R}^4, ω)

admits translations $X^a \rightarrow X^a + c^a \mathbf{1}$, no rotation invariance

fuzzy 2-sphere S_N²

$$X_1^2 + X_2^2 + X_3^2 = R_N^2$$
, $[X_i, X_i] = i\epsilon_{iik}X_k$

fully covariant under SO(3)

(Hoppe; Madore)

Motivation

emergent gravity on deformed \mathcal{M}_{θ}^{4} ?

H.S. 1003.4134 ff Cf. H.Yang, hep-th/0611174 ff

eff. metric encoded in $\Box = [X_a, [X^a, .]] \sim -e^{\sigma}(x)\Delta_G$

$$G^{\mu
u}=e^{-\sigma} heta^{\mu\mu'} heta^{\mu\mu'}g_{\mu'
u'}$$

fluctuations $X^a + A^a(X) \rightarrow \text{dynamical metric} \rightarrow \text{induced gravity?}$ (cf. Sakharov)

problems:

Motivation

ullet breaks Lorentz invariance o other terms possible

(e.g.
$$R_{\mu\nu\alpha\beta}\theta^{\mu\nu}\theta^{\alpha\beta}$$
 D. Klammer, H.S. 0909.5298)

- full metric fluctuations require transversal brane excitations, non-linear treatment required
- huge cosm. constant

issues seem resolved for covariant quantum spaces:

4D covariant quantum spaces

Matrix models

Motivation

- ullet in 4D: symplectic form ω breaks local (Lorentz/Euclid.) invar.
- avoided on covariant quantum spaces

```
example: fuzzy four-sphere S_N^4
```

```
Grosse-Klimcik-Presnajder; Castelino-Lee-Taylor; Medina-o'Connor; Ramgoolam; Kimura; Abe; Karabail-Nair; Zhang-Hu 2001 (QHE); HS
```

- noncompact H_n^4 Hasebe 1207.1968, M. Sperling, HS 1806.05907
- projection of $H_n^4 \to \text{cosmological space-time } \mathcal{M}_n^{3,1}$

```
HS, 1710.11495, 1709.10480
```

• $\mathcal{M}_n^{3,1} \to \text{gravity, lin. Schwarzschild}$

M. Sperling, HS 1901.03522, HS 1905.07255

} → higher-spin gauge theory in IKKT model!

Euclidean fuzzy hyperboloid H_n^4 (= $EAdS_n^4$)

Hasebe arXiv:1207.1968, M. Sperling, HS 1806.05907

 \mathcal{M}^{ab} ... hermitian generators of $\mathfrak{so}(4,2)$,

$$[\mathcal{M}_{ab}, \mathcal{M}_{cd}] = i(\eta_{ac}\mathcal{M}_{bd} - \eta_{ad}\mathcal{M}_{bc} - \eta_{bc}\mathcal{M}_{ad} + \eta_{bd}\mathcal{M}_{ac}).$$

 $\eta^{ab} = \operatorname{diag}(-1,1,1,1,1,-1)$ choose "short" discrete unitary irreps \mathcal{H}_n ("minireps", doubletons) special properties:

- irreps under 50(4, 1), multiplicities one, minimal oscillator rep.
- positive discrete spectrum

$$\operatorname{spec}(\mathcal{M}^{05}) = \{E_0, E_0 + 1, ...\}, \qquad E_0 = 1 + \frac{n}{2}$$

lowest eigenspace is n + 1-dim. irrep of $SU(2)_L$: fuzzy S_n^2

gravity

Motivation

Matrix models

fuzzy hyperboloid H_n^4

Matrix models

def.

Motivation

$$X^a:=r\mathcal{M}^{a5}, \quad a=0,...,4$$

 $[X^a,X^b]=ir^2\mathcal{M}^{ab}=:i\Theta^{ab}$

5 hermitian generators X^a satisfy

(cf. Snyder)

$$\eta_{ab}X^aX^b = X^iX^i - X^0X^0 = -R^2\mathbf{1}, \qquad R^2 = r^2(n^2 - 4)$$

one-sided hyperboloid in $\mathbb{R}^{1,4}$, covariant under SO(4,1)

note: induced metric = Euclidean AdS4

oscillator construction: 4 bosonic oscillators $[\psi_{\alpha}, \bar{\psi}^{\beta}] = \delta_{\alpha}^{\beta}$

 \mathcal{H}_n = suitable irrep in Fock space

Then

Matrix models

Motivation

$$\mathcal{M}_{ab} = \bar{\psi} \Sigma_{ab} \psi, \qquad \gamma_0 = extit{diag} (1, 1, -1, -1)$$
 $\mathcal{X}^a = r \bar{\psi} \gamma^a \psi$

fact: H_n^4 = quantized $\mathbb{C}P^{1,2} = S^2$ bundle over H^4 , selfdual $\theta^{\mu\nu}$

functions on $H_n^4 \stackrel{loc}{\cong} S^2 \times H^4 = \text{harmonics on } S^2 \times \text{functions on } H^4$

local stabilizer acts on $S^2 \rightarrow \text{harmonics} = \text{higher spin modes}$

$$End(\mathcal{H}_n) \leadsto HS(\mathcal{H}_n) = \int_{\mathbb{C}P^{1,2}} f(m) |m\rangle \langle m| \cong \bigoplus_{s=0}^n \mathcal{C}^s$$

$$C^0$$
 = scalar functions on H^4 : $\phi(X)$

$$C^1$$
 = selfdual 2-forms on H^4 : $\phi_{ab}(X)\theta^{ab} = \Box$

:

$$End(\mathcal{H}_n) \cong \text{ fields on } H^4 \text{ taking values in } \mathfrak{hs} = \oplus \longrightarrow \exists \theta^{a_1b_1}...\theta^{a_sb_s}$$

higher spin modes = would-be KK modes on S^2

i.e. higher spin theory, truncated at n

M. Sperling, HS 1806.05907

 H_n^4 is starting point for cosmological quantum space-times $\mathcal{M}_n^{3,1}$:

- exactly homogeneous & isotropic, Big Bounce
- on-shell higher-spin fluctuations obtained
- spin 2 metric fluctuations → gravity (linearized)

open FRW universe from H_n^4

Matrix models

HS 1710.11495

 $\mathcal{M}_n^{3,1} = H_n^4$ projected to $\mathbb{R}^{1,3}$ via

$$Y^{\mu} \sim y^{\mu}: \mathbb{C}P^{1,2} \to H^4 \subset \mathbb{R}^{1,4} \stackrel{\Pi}{\longrightarrow} \mathbb{R}^{1,3}$$
.

induced metric has Minkowski signature!

algebraically: $\mathcal{M}_{n}^{3,1}$ generated by

$$Y^{\mu} := X^{\mu}$$
, for $\mu = 0, 1, 2, 3$ (drop X^4)

Motivation

- SO(3,1) manifest \Rightarrow foliation into SO(3,1)-invariant space-like 3-hyperboloids H₂³
- double-covered FRW space-time with hyperbolic (k = -1)spatial geometries

$$ds^2 = d\tau^2 - a(\tau)^2 d\Sigma^2,$$

 $d\Sigma^2$... SO(3, 1)-invariant metric on space-like H^3

Higher spin gauge theory

functions on $\mathcal{M}^{3,1}$:

generated by $X^{\mu} = r \mathcal{M}^{\mu 5} \sim x^{\mu}$ and $T^{\mu} = \frac{1}{P} \mathcal{M}^{\mu 4} \sim t^{\mu}$, with CR

$$\begin{array}{ll} \{t^{\mu}, x^{\nu}\} & = \sinh(\eta) \eta^{\mu\nu} \\ \{x^{\mu}, x^{\nu}\} & = \theta^{\mu\nu} \\ \{t^{\mu}, t^{\nu}\} & = -\frac{1}{r^2 H^2} \theta^{\mu\nu} \end{array}$$

constraints

$$egin{array}{lll} x_{\mu} x^{\mu} &= -R^2 \cosh^2(\eta), & x^4 = R \sinh(\eta) \ t_{\mu} t^{\mu} &= r^{-2} \cosh^2(\eta), \ t_{\mu} x^{\mu} &= 0, \ heta^{\mu
u} &= c (x^{\mu} t^{
u} - x^{
u} t^{\mu}) + b \epsilon^{\mu
u lpha eta} x_{lpha} t_{eta} \end{array}$$

 t^{μ} ... generates space-like S^2 fiber

Motivation

functions as higher-spin modes:

$$\phi \in \text{End}(\mathcal{H}_n) = \phi^{(0)} \oplus \phi^{(0)} \oplus ... \oplus \phi^{(n)}, \qquad \phi^{(s)} \in \mathcal{C}^s$$

(selected by spin Casimir S2)

2 points of view:

• functions on H_n^4 : full SO(4, 1) covariance represent $\phi^{(s)}$ as

$$\phi_{a_1...a_s}^H \propto \{x^{a_1}, \dots \{x^{a_s}, \phi^{(s)}\} \dots\}_0
\phi^{(s)} = \{x^{a_1}, \dots \{x^{a_s}, \phi^H_{a_1...a_s}\} \dots\}$$

• functions on $\mathcal{M}_n^{3,1}$: reduced SO(3,1) covariance

$$\phi^{(s)}=\phi^{(s)}_{\mu_1\dots\mu_s}(x)t^{\mu_1}\dots t^{\mu_s}$$

$$t_\mu x^\mu=0 \ \Rightarrow \text{ "space-like gauge"} \qquad \boxed{x^{\mu_i}\phi^{(s)}_{\mu_1\dots\mu_s}=0}$$

$$(\to \text{ no ghosts!})$$

Matrix models

$$D: \quad \mathcal{C}^s \quad \to \mathcal{C}^{s+1} \oplus \mathcal{C}^{s-1}$$

$$\phi \quad \mapsto D^+\phi + D^-\phi = \{\theta^{45}, \phi\}$$

$$\phi = \phi_{\mu_1 \dots \mu_s}(x)t^{\mu_1} \dots t^{\mu_s} \quad \mapsto t^{\mu_1} \dots t^{\mu_s}t^{\mu} \nabla_{\mu}^{(3)}\phi_{\mu_1 \dots \mu_s}(x)$$

def.

$$\mathcal{C}^{(s,0)} = \{\phi \in \mathcal{C}^s; \ D^-\phi = 0\}$$
 ... primal fields
$$\mathcal{C}^{(s+k,k)} = (D^+)^k \mathcal{C}^{(s,0)}$$
 ... descendants

(cf. CFT, but no highest weight modules!)

... spin s fields on H^3 in space-like gauge, SO(4, 1) spin s + k

Motivation

SO(4,2) - invariant integral = trace

$$\langle \phi, \phi' \rangle := \int_{\mathbb{C}P^{1,2}} \omega^{\wedge 3} \ \phi \phi' = \int_{H^4} dV [\phi \phi']_0$$

 $[\phi \phi']_0$... average over S^2 fiber

$\mathcal{M}^{3,1}$ realization in IKKT model:

background solution:

Matrix models

$$T^{\mu}:=rac{1}{R}\mathcal{M}^{\mu 4}$$

satisfies

$$\Box T^{\mu} = 3R^{-2}T^{\mu}, \qquad \Box = [T^{\mu}, [T_{\mu}, .]]$$

- \bullet $[\Box, S^2] = 0$, $S^2 = [\mathcal{M}^{ab}, [\mathcal{M}_{ab}, \cdot]] + r^{-2}[X_a, [X^a, \cdot]]$
 - ... spin Casimir, selects spin s sectors Cs
 - \Rightarrow higher-spin expansion $\phi = \phi(X) + \phi_{\mu}(X)T^{\mu} + ...$ on $\mathcal{M}^{3,1}$
- $\square \sim \alpha^{-1}\square_G$ encodes eff. FRW metric $ds_G^2 = -dt^2 + a(t)^2 d\Sigma^2$, asymptotically coasting $a(t) \propto t$
- Big Bounce, initial $a(t) \sim t^{1/5}$ singularity

gravity

fluctuations & higher spin gauge theory

$$S[Y] = Tr(-[Y^{\mu}, Y^{\nu}][Y_{\mu}, Y_{\nu}] + m^{2}Y^{\mu}Y_{\mu}) = S[U^{-1}YU]$$

background solution: $\overline{Y}^{\mu} = T^{\mu} \dots \mathcal{M}_{n}^{3,1}$ add fluctuations $Y^{\mu} = \overline{Y}^{\mu} + A^{\mu}$. gauge trafos $\mathcal{A}^{\mu} \to [\Lambda, \mathcal{A}^{\mu}] + [\Lambda, \overline{Y}^{\mu}],$ $\Lambda \in End(\mathcal{H})$ expand action to second oder in \mathcal{A}^{μ}

$$S[Y] = S[\overline{Y}] + \frac{2}{g^2} \operatorname{Tr} \underline{\mathcal{A}_{\mu}} \Big(\underbrace{(\Box + \frac{1}{2} m^2) \delta_{\nu}^{\mu} + 2[[\overline{Y}^{\mu}, \overline{Y}^{\nu}], .]}_{\mathcal{D}^2} - \underbrace{[\overline{Y}^{\mu}, [\overline{Y}^{\nu}, .]]}_{g.f.} \Big) \underline{\mathcal{A}_{\nu}}$$

 \mathcal{A}_{μ} ... hs-valued field on \mathcal{M} , incl. spin 2

4 tangential SO(3, 1)-covariant modes for each $\phi = \phi^{(s,k)}$:

$$\begin{array}{lll} \mathcal{A}_{\mu}^{(+)}[D^{-}\phi] & := \{x_{\mu}, D^{-}\phi\}_{+} \\ \mathcal{A}_{\mu}^{(-)}[D^{+}\phi] & := \{x_{\mu}, D^{+}\phi\}_{-} \\ \mathcal{A}_{\mu}^{(n)}[\phi] & := D^{+}\{x_{\mu}, \phi\}_{-} \\ \mathcal{A}_{\mu}^{(g)}[\phi] & := \{t_{\mu}, \phi\} & ... \text{pure gauge mode} \end{array}$$

underlying SO(4,2) extremely useful to show: are eigenmodes

$$\begin{array}{ll} \left(\mathcal{D}^{2}+\frac{1}{2}\mu^{2}\right)\mathcal{A}_{\mu}^{(+)}[D^{-}\phi^{(s)}] &=m^{2}\mathcal{A}_{\mu}^{(+)}[D^{-}\phi^{(s)}] \\ \left(\mathcal{D}^{2}+\frac{1}{2}\mu^{2}\right)\mathcal{A}_{\mu}^{(-)}[D^{+}\phi^{(s)}] &=m^{2}\mathcal{A}_{\mu}^{(-)}[D^{+}\phi^{(s)}] \\ \left(\mathcal{D}^{2}+\frac{1}{2}\mu^{2}\right)\mathcal{A}_{\mu}^{(g)}[\phi^{(s)}] &=m^{2}\mathcal{A}_{\mu}^{(n)}[\phi^{(s)}] \\ \left(\mathcal{D}^{2}+\frac{1}{2}\mu^{2}\right)\mathcal{A}_{\mu}^{(n)}[\phi^{(s)}] &=m^{2}\mathcal{A}_{\mu}^{(n)}[\phi^{(s)}] \end{array}$$

for $\Box \phi = m^2 \phi$

4 regular on-shell modes $(\mathcal{D}^2 - \frac{3}{\mathcal{D}^2})\mathcal{A} = 0$ for

$$\begin{array}{lll} \mathcal{A}^{(+)}[D^-\phi^{(s)}] & \text{for} & \Box\phi^{(s)}=0, \\ \mathcal{A}^{(-)}[D^+\phi^{(s)}] & \text{for} & \Box\phi^{(s)}=0, \\ \mathcal{A}^{(g)}[\phi^{(s)}] & \text{for} & \Box\phi^{(s)}=0, \\ \mathcal{A}^{(n)}[\phi^{(s)}] & \text{for} & \Box\phi^{(s)}=0. \end{array}$$

all 4 regular modes propagate in the same way!

+ one "special" mode

Matrix models

$$\mathcal{A}^{(-)}[\phi^{(s,0)}] \qquad ext{for} \qquad \left(\Box + rac{-2s}{R^2}
ight)\phi^{(s,0)} = 0$$

orthogonal to all regular modes, positive

establish lin. independence by diagonalzing inner product matrix

$$\mathcal{G}^{(i,j)} = \left\langle \mathcal{A}^{(i)}[\phi'], \mathcal{A}^{(j)}[\phi] \right\rangle, \qquad i, j \in \{+, -, n, g\}$$

complete set of eigenmodes:

Motivation

- for $\phi^{(s,k)}$, $k \neq s \neq 0$: 4 independent modes, signature (+++-)
- for φ^(s,0), s ≠ 0:
 3 independent modes, signature (+ + −),
 plus special mode A^(−)[φ^(s,0)], positive
- for $\phi^{(s,0)}$, $s \neq 0$: 2 modes, signature (+-)
- for $\phi^{(s,s)}$: 4 modes, signature (++-0)one null "would-be pure gauge" mode ... (?only off-shell?)

gravity

 \rightarrow generically 2 physical modes for each $\Box \phi^{(s,k)}$ in

$$\mathcal{H}_{phys} = \{\mathcal{D}^2 \mathcal{A} = 0, \ \mathcal{A} \ \text{gauge fixed}\}/\{\text{pure gauge}\}$$

pure gauge mode

$$\mathcal{A}_{\mu}^{(g)}[\phi] = \{t_{\mu}, \phi\}$$

results:

Motivation

- no ghosts (cf. YM!), + scalar null modes for $\phi^{(s,s)}$
- all modes found, full control
- same propagation for all modes even though
 - SO(3, 1) only space-like
 - \exists time-like VF $\tau = x_{\mu}\{t^{\mu},.\} \sim \frac{\partial}{\partial t}$ (cosmic background!)

gravity

vielbein, metric & dynamical geometry

effective metric $G^{\mu\nu}$ extracted from kinetic term of (all) modes

$$-\mathit{Tr}[\mathcal{T}^{lpha},\phi][\mathcal{T}_{lpha},\phi] \, \sim \int \mathsf{e}^{lpha}\phi \mathsf{e}_{lpha}\phi = \int \gamma^{\mu
u}\partial_{\mu}\phi\partial_{
u}\phi = \int \sqrt{|\mathcal{G}|}\mathcal{G}^{\mu
u}\partial_{\mu}\phi\partial_{
u}\phi$$

vielbein

$$egin{array}{ll} \mathbf{e}^{lpha} &:= \{ \mathcal{T}^{lpha},. \} = \mathbf{e}^{lpha\mu} \partial_{\mu} \ \mathbf{e}^{lpha\mu} &= \sinh(\eta) \eta^{lpha\mu} \end{array}$$

metric

$$G^{\mu\nu} = \alpha \gamma^{\mu\nu} , \qquad \alpha = \sqrt{\frac{|\theta^{\mu\nu}|}{|\gamma^{\mu\nu}|}} ,$$

$$\gamma^{\mu\nu} = g_{\mu'\nu'} [\theta^{\mu'\mu} \theta^{\nu'\nu}]_{S^2}$$

encoded in Laplacian $\square_Y = [Y_\mu, [Y^\mu, .]] \sim \frac{1}{\sqrt{|G|}} \partial_\mu (\sqrt{|G|} G^{\mu\nu} \partial_\nu.)$:

- \rightarrow FLRW metric: $ds^2 = d\tau^2 a(\tau)^2 d\Sigma^2$
 - late times: $a(t) \approx \frac{3}{2}t$, $t \to \infty$ coasting universe (no bad!)
 - big bounce: $a(t) \propto (t t_0)^{\frac{1}{5}}$

perturbed vielbein:
$$Y^{lpha}=T^{lpha}+\mathcal{A}^{lpha}$$
 $e^{lpha}=\{T^{lpha}+\mathcal{A}^{lpha},.\}=e^{lpha\mu}[\mathcal{A}]\partial_{\mu}$ $\delta_{\mathcal{A}}\gamma^{\mu\nu}\sim\{\mathcal{A}^{\mu},x^{
u}\}+(\mu\leftrightarrow
u)$

linearize & average over fiber $\rightarrow h^{\mu\nu} = [\delta_{\mathcal{A}}\gamma^{\mu\nu}]_0$ coupling to matter:

$$S[{
m matter}] \sim \int_{\mathcal{M}} d^4x \, h^{\mu\nu} \, T_{\mu\nu}$$

gauge transformations

Matrix models

Motivation

- -of functions: $\phi \mapsto \{\Lambda, \phi\}$
 - spin 1 trafos: $\Lambda = v^{\mu}(x)t_{\mu} \in \mathcal{C}^1$:

$$\{v^{\mu}t_{\mu},\phi\}_{0} = \frac{1}{3}\left(\sinh(\eta)\left(3v^{\mu}\partial_{\mu} + (\operatorname{div}v)\tau - \tau v^{\mu}\partial_{\mu}\right) + X_{\gamma}\varepsilon^{\gamma\mu\alpha\beta}\partial_{\alpha}v_{\mu}\partial_{\beta}\right)\phi$$

3 (rather than 4) diffeomorphisms!

due to invar. symplectic volume on $\mathbb{C}P^{1,2}$

- -of gauge fields: $A^{\mu} \mapsto \{\Lambda, T^{\mu} + A^{\mu}\}$
- -of gravitons:

$$\boxed{\delta \textit{G}_{\mu\nu} = \nabla_{\mu} \mathcal{A}_{\nu} + \nabla_{\mu} \mathcal{A}_{\nu},} \qquad \mathcal{A}_{\mu} = \{\textit{x}_{\mu}, \Lambda\}_{-} \; ... \; \mathsf{VF}$$

∇ ... covariant w.r.t. FLRW background

$$\nabla_{\alpha} \mathcal{A}^{\alpha} = \frac{1}{\chi_{2}^{2}} (x \cdot \mathcal{A})$$
 ...(almost) volume preserving

gravity

towards gravity on $\mathcal{M}^{3,1}$

linearized metric: $h^{\mu\nu} \propto \{A^{\mu}, x^{\nu}\} + (\mu \leftrightarrow \nu)$

off-shell: contains all dof required for gravity

5+1+1 dof from
$$\mathcal{A}^{(-)}[\phi^{(2)}] + \mathcal{A}^{(+)}[\phi^{(0)}] + \mathcal{A}^{(n)}[D^+\phi^{(0)}]$$
 (null?),

+ 3 (!) pure gauge
$$\nabla_{\mu}\mathcal{A}_{\nu}+\nabla_{\mu}\mathcal{A}_{\nu}$$

lin. Ricci:

$$\mathcal{R}_{(\mathrm{lin})}^{\mu\nu}[h[\mathcal{A}]] \hspace{0.2cm} pprox rac{1}{2} \underbrace{\Box h_{\mu
u}[\mathcal{A}]}_{h_{\mu
u}[\mathcal{D}^{2}\mathcal{A}]pprox 0} -rac{1}{4}\left(\{t_{\mu},\{t_{
u},h\}\}+(\mu\leftrightarrow
u)
ight)$$

(up to cosm. scales)

on-shell (vacuum) in M.M.:

$$\begin{array}{lll} \mathcal{A}^-[\phi^{(2,0)}]: & h\approx 0 \ \Rightarrow \ \mathcal{R}^{\mu\nu}_{(\mathrm{lin})} \ \approx 0 \ \dots \ 2 \ \mathrm{graviton} \ \mathrm{modes} \ (\mathrm{massless} \ !) \\ \\ \mathcal{A}^-[\phi^{(2,1)}]: & h\approx 0 \ \Rightarrow \ \mathcal{R}^{\mu\nu}_{(\mathrm{lin})} \ \approx 0 \ \dots \ \mathrm{trivial} \ (\mathrm{on\text{-}shell}) \\ \\ \mathcal{A}^-[\phi^{(2,2)}], & \mathcal{R}^{\mu\nu}_{(\mathrm{lin})} \sim 0 \ \dots \ \mathrm{scalar} \ \mathrm{mode} \ (\mathrm{lin}. \ \mathrm{Schwarzschild} \ !) \\ \end{array}$$

HS arXiv:1905.07255

focus on scalar metric perturbations $\mathcal{A}^-[D^+D^+\phi]$, gauge-fixed can show: linearized Ricci-tensor vanishes, $\mathcal{R}^{\mu\nu}_{(lin)}[\delta G[\mathcal{A}]] \approx 0$ explicit metric fluctuation:

$$\delta G_{\mu\nu} dx^{\mu} dx^{\nu} \stackrel{\tau \to -2}{=} -4\phi' (dt^2 + a(t)^2 d\Sigma^2)$$
 quasi-static

ightarrow lin. Schwarzschild (pprox Vittie)

$$ds^2 = (G_{\mu\nu} - \delta G_{\mu\nu}) dx^{\mu} dx^{\nu} = -dt^2 + a(t)^2 d\Sigma^2 + \phi'(dt^2 + a(t)^2 d\Sigma^2)$$

 $\phi' \sim \frac{1}{\rho} e^{-\chi - 3\eta} \sim \frac{e^{-\chi}}{\sinh(\chi)} \frac{1}{a(t)^2} \sim \frac{1}{\rho} \frac{1}{a(t)^2}$

 \approx lin. Vittie solution on FRW with mass $m(t) \sim \frac{1}{a(t)}$

<u>note:</u> linearized approx. only valid in quasi-static case $\tau = -2$, otherwise large pure gauge contribution (cf. massive graviton).

Motivation

Matrix models

discussion

Motivation

• non- quasi-static case $\tau \sim x^{\mu}\partial_{\mu} \neq -2$: large pure gauge contribution (cf. massive graviton), \rightarrow lin. approx. breaks down at late times

for very long wavelengths: lin. approx. more reliable.

→ extra scalar metric mode, not Ricci-flat!

would behave like ≈ dark matter!

- similar feature expected for would-be spin 1 graviton
- reliable treatment requires induced Einstein-Hilbert action S_{EH}
 - expect Ricci-flat solution (Schwarzschild, ...) to survive should recover inhomogeneous Einstein eq. $G_{\mu\nu} \propto T_{\mu\nu}$
 - \Rightarrow expect \approx linearized GR at intermediate scale, good agreement with solar system tests
 - ∃ non-Ricci-flat mode(s), to be understood

Matrix models

- model is fully non-linear (to be understood)
- no cosm. const. $\int d^4x \sqrt{g}$ (?), replaced by YM-action, stabilizes $M^{3,1}$
 - → no cosm. const. problem ?!
- significant differences at cosmic scales, reasonable (coasting) cosmology without any fine-tuning !!

coupling to matter & eom:

for physical transverse traceless spin 2 modes $h_{\mu\nu}[\phi^{(2,0)}]$:

$$S_2[\mathcal{A}^{(-)}[\phi^{(2,0)}]] \propto -\int \, h^{\mu
u}[\phi^{(2,0)}](\Box -R^{-2})(\Box_H -2r^2)^{-1}h_{\mu
u}[\phi^{(2,0)}]$$

leads to eom

$$(\Box - 2R^{-2})h_{\mu\nu} \sim -(\Box_H - 2r^2)T_{\mu\nu}$$

upon adding S_{EH} expect

$$\left(\Box - \frac{\Box - R^{-2}}{\Box_H - 2r^2}\right) h_{\mu\nu} \sim T_{\mu\nu}$$

... Einstein eq., with slight modifications, still no ghosts (?)

summary

Motivation

- matrix models: natural framework for quantum theory of space-time & matter
- 3+1D covariant quantum cosmological FRW space-time solution
 - → higher spin theory reg. BB, finite density of microstates
- fluctuations fully consistent (no ghosts or tachyons) all ingredients for (lin.) gravity
- quantized like Yang-Mills theory, good UV behavior (SUSY)
- → emergent gravity rather than GR extra scalar mode (only 3 diffeos), possibly dark matter/energy...

breaking $SO(4,1) \rightarrow SO(3,1)$ and sub-structure

consider

$$D\phi := -i[X^4, \phi],$$
 respects $SO(3, 1)$

acts on spin s modes as follows

$$D = \underbrace{\operatorname{div}^{(3)}\phi}_{D^{-}\phi} + \underbrace{t^{\mu}\nabla_{\mu}^{(3)}\phi}_{D^{+}\phi}: \quad \mathcal{C}^{s} \to \mathcal{C}^{s+1} \oplus \mathcal{C}^{s-1}$$

decomposition into SO(3,1) irreps on $H^3 \subset H^4$

$$\mathcal{C}^{(s)} = \mathcal{C}^{(s,0)} \oplus \mathcal{C}^{(s,1)} \oplus \ldots \oplus \mathcal{C}^{(s,s)}$$

D- resp. D+ act as

$$D^-: \mathcal{C}^{(s,k)} \to \mathcal{C}^{(s-1,k-1)}, \qquad D^+: \mathcal{C}^{(s,k)} \to \mathcal{C}^{(s+1,k+1)}$$
.

