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The	typical	“textbook”	example	of	SSB	starts	with	the	following	potential	
energy:	
	
	
	
	
	
	
	
	
	
	
	
	

Particle	physicists	call	it	the		
“Mexican-hat	potential.”	
		
For	condensed	matter	physicists	this		
is	known	as	the	“Ginzburg-Landau”		
potential.	
	

� = �1 + i�2

V (�) = �µ2|�|2 + �|�|4



The	potential	has	a	2-dimensional	rotation	symmetry.	
But	the	ground	state	is	not	unique,	and	can	be	obtained	by	minimizing	the	
potential	energy:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

•  There	is	an	infinite	number	of		
ground	state,	parameterized	by		
the	angle	parameter	“alpha”:	
	
	
	
•  But	once	an	“alpha”	is	chosen,	the		
rotational	invariance	is	hidden.	
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To	see	the	NGB	explicitly,	it’s	best	to	go	to	“polar	coordinate:”	
	
	
	
In	this	parameterization,	the	ground	state	is	
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Expanding	with	respect	to	the		
ground	state:	
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The	angular	mode	disappears		
from	the	potential:	

à  Pi-mode	is	massless!	
After	all,	it’s	the	excitation	along		
degenerate	ground	states.	



The	“kinetic	energy”	gives	
	
	
	
	
Notice	the	alpha-dependence	drops	out!	
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Recall	that,	under	rotation	by	theta-angle,	

h⇡i↵ ! h⇡i↵+✓ = ↵+ ✓

This	is	how	rotational	invariance	manifest	
Itself	in	the	“polar	coordinate!”	
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Equivalently,	This	is	the	same	as	shifting		
the	Pi-mode	by	a	constant:	

Rotational	symmetry	implies	the	dynamics	
must	be	independent	of	the	constant	shift!	
	
We	call	this	a	“shift	symmetry.”	

⇡ ! ⇡ + ✓



In	this	example,	the	full	symmetry	group	“G”	of	the	system	is	the	2-d	
rotation,	the	U(1)	symmetry:	
	
	
The	ground	state																								breaks	the	U(1)	symmetry	completely.	
There	is	no	residual	symmetry	that	leaves	the	ground	invariant.		
h⇢i↵ = v , h⇡i↵ = ↵

Broken symmetry G = U(1)

Unbroken symmetry H = ;



There	could	be	more	complicated	cases.			
For	example,	let’s	consider	n	real	scalars:	
	
	
	
	
	
	
Then	
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Broken symmetry G = O(n)

Unbroken symmetry H = O(n� 1)



The	NGB	mode	can	be	parameterized	by	
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The	NGB	mode	can	be	parameterized	by	
	
	
	
	
	
	
Key	observations:	
	
•  Interactions	of	NGB,	in	general,	are	horribly	nonlinear.	
•  NGBs	are	always	“derivatively	coupled,”	due	to	the	shift	symmetry:	
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Absent	in	the	simple	U(1)	case.	
No	one	ever	worked	it	out,	to	our	knowledge.	



More	generally,	there	is	a	well-defined	procedure	to	write	down	NGB	
effective	actions	for	arbitrary	G	and	H.		
(Coleman,	Callan,	Wess	and	Zumino,	Phys.	Rev.	1969.)	
	
	
The	general	procedure	requires	prior	knowledge	of	“G”	and	“H”.	
That	is,	one	need	to	know	the	full	symmetry	group	of	the	Mexican-hat	
potential	first!	
As	a	result,	different	G	and	H	lead	to	different	effective	actions.	
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effective	actions	for	arbitrary	G	and	H.		
(Coleman,	Callan,	Wess	and	Zumino,	Phys.	Rev.	1969.)	
	
	
The	general	procedure	requires	prior	knowledge	of	“G”	and	“H”.		
That	is,	one	need	to	know	the	full	symmetry	group	of	the	Mexican-hat	
potential	first!	
As	a	result,	different	G	and	H	lead	to	different	effective	actions.	
	
	
The	conventional	wisdom:	
	
Nonlinearity	in	NGB	interactions	is	due	to	the	“nonlinearly	realized”	
group	G	in	the	UV.	
	
	



let’s	review	CCWZ	briefly:	

Callan,	Coleman,	Wess	and	Zumino:	1968	



let’s	review	CCWZ	briefly:	

Callan,	Coleman,	Wess	and	Zumino:	1968	

⇧0 = ⇧0(⇧, g)

This	is	a	complicated	mess.	So	complicated	
that	CCWZ	didn’t	want	to	deal	with	it!	
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However,	we	know	that	for	

Callan,	Coleman,	Wess	and	Zumino:	1968	

⇧0 = ⇧0(⇧, g)

This	is	the	shift	symmetry		
mentioned	in	the	beginning.	

g = ei"
aXa

, ⇡a 0 = ⇡a + "a + · · ·



Instead,	CCWZ	looked	for	objects	that	have	“simple”	transformation	
properties	under	the	action	of	G.	
	
These	are	contained	in	the	Cartan-Maurer	one-form:	
	
	
	
They	are	the	“Goldstone	covariant	derivative”	and	the	“associated	gauge	
field”,	
	
	
upon	which	the	complete	effective	lagrangian	can	be	built	(apart	from	
the	topological	terms)	



In	this	fashion,	CCWZ	circumvents	the	problem	of	working	out	how	the	
pions	transform	under	the	broken	G:	

⇧0 = ⇧0(⇧, g)

Not	needed	for	writing	down	the	EFT.	



In	this	fashion,	CCWZ	circumvents	the	problem	of	working	out	how	the	
pions	transform	under	the	broken	G:	
	
	
	
	
	
	
	
	
CCWZ	is	extremely	powerful,	but	it	adopts	a	“top-down”	perspective,	
which	requires	knowing	ahead	of	time	what	the	broken	group	“G”	is	in	
the	UV.		
	
It	also	obscures	the	fact	that	Goldstone	bosons	are	infrared	degrees	of	
freedoms	that	connect	different	vacua.		

⇧0 = ⇧0(⇧, g)

Not	needed	for	writing	down	the	EFT.	



Consider	two	different	G’s	and	H’s,	which	both	contain	a	NGB	charged	
under	(a	U(1)	subgroup	of)	H	
	
	
	
	
		

in which case the Closure condition in Eq. (3.14) is equivalent to the Jacobi identity, thereby

allowing f iab to be interpreted as structure constants (living in the subspace spanned by

G/H).2 For a symmetric coset where fabc vanished, the knowledge of f ijk and f iab is su�cient

to reproduce the entire CCWZ Lagrangian.

In the end, the universal Lagrangian for nl�m, at the two-derivative order and all orders

in 1/f , is

L =
1

2
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The Lagrangian is dictated by the infrared behavior of the Goldstone scattering amplitudes:

1) the Adler’s zero condition and 2) theH-invariance, without ever specifying what the broken

group G is in the UV. The only undetermined parameter is the overall normalization of the

decay constant.

To dispel any remaining doubts on the universality of Eq. (3.38), let’s consider two explicit

examples: SU(2)/U(1) and SU(5)/SO(5). The former is the minimal coset containing a

complex Nambu-Goldstone boson � charged under the unbroken U(1). For the latter, one

can obviously identify several SU(2) subgroups in SU(5) and several U(1) subgroups in

SO(5), resulting in many complex Nambu-Goldstone bosons. Denote one of them to be �.

The universality of Goldstone interactions imply interactions of � and � must be identical

with each other, which are dictated only by the unbroken U(1) and the Adler’s zero condition,

up to the normalization of the decay constant f . Using the CCWZ formalism to write down

the two-derivative interactions for � and � we obtain [3]3
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The interactions of � become identical to those of � after the rescaling of f ! 4f in Eq. (3.18),

as expected from the universality.

3.2 The Shift Symmetry to All Orders in 1/f

Although the closed-form expressions for Fi, i = 2, 3, 4 have been derived previously, the

general nonlinear shift F1 was presented without derivation only recently in Ref. [5]. The

simplest way to derive F1 is to make use of the universality of Eq. (3.38) and perform a

”matching” calculation into the simplest nontrivial unbroken group of H = SO(2) ⇡ U(1),

which we demonstrate below.
2The identification in Eq. (3.16) is possible only because we choose a basis such that (T i) = �(T i)T in

Eq. (3.3).
3There is a typo in Eq. (14) of Ref. [3]. The expression in Eq. (3.19) is the correct one.
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G1 = SU(2); H1 = U(1)

G2 = SU(5); H2 = SO(5)
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Indeed,	the	NGB	effective	interactions	look	different.	



Let’s	recap	the	conventional	wisdom	from	the	past	four	decades:	
	
•  SSB	occurs	when	the	ground	state	is	not	invariant	under	the	full	

symmetry	of	the	system.	

•  Nambu-Goldstone	modes	are	long	wavelength,	“gapless”	excitations	
over	the	degenerate	ground	states.	

•  NGBs	are	“derivatively	coupled,”	due	to	a	shift	symmetry.	

•  Effective	interactions	of	NGB	are	dependent	on	both	the	full	symmetry	
group	G	in	the	UV	and	the	unbroken	group	H	in	the	IR.	

	
	



Let’s	talk	about	something	that	is	not	usually	emphasized	in	the	textbook.	
Recall	the	ground	state	is	characterized	by	
	
	
Now	let’s	bring	in	Quantum	Mechanics...	
	
	

|VACi = {|0i↵; ↵ 2 [0, 2⇡)}



Let’s	talk	about	something	that	is	not	usually	emphasized	in	the	textbook.	
Recall	the	ground	state	is	characterized	by	
	
	
Now	let’s	bring	in	Quantum	Mechanics...	
	
	
	
This	superposition	of	alpha-state	is	invariant	under	rotation.	Why	couldn’t	
it	be	the	“ground	state”?	

|VACi = {|0i↵; ↵ 2 [0, 2⇡)}

|0̃i =
Z

d↵

2⇡
|0i↵ , R(✓)|0̃i = |0̃i



	
This	shows	an	important	ingredient	for	SSB	to	occur	is	the	“vacuum	
superselection	rule”,	
	
	
	
for	any	Hermitian	local	operator	“O”.	
	
	
Then	any	true	ground	state	must	carry	a	definite	“alpha”	and	cannot	be	a	
superposition	of	alpha-states.	

↵h0|O|0i↵0 = 0 for any Hermitian local operator O



An	intuitive	way	to	understand	the	superselection	rule	is	this:	
	
	
	
	
	
	
	
	
	
	
The	energy	cost	to	flip	the	alpha-direction	everywhere	is	proportional	to	
the	size	of	the	system.		
If	the	system	has	an	infinite	volume,	the	energy	cost	is	infinite.	
à	SSB	only	occurs	for	systems	with	infinite	volume!	

O

↵h0|O|0i↵0 = 0 for any Hermitian local operator O

|0i↵0 |0i↵



	
On	the	other	hand,	a	“local	excitation”	only	costs	finite	energy	and	ought	
to	exist:	
	
	
	
	
	
	
	
	
Such	“local	excitations”	are	precisely	the	NGB	modes!	

⇡(x)



The	superselection	rule	has	an	important	implication	for	the	scattering	
amplitudes	of	NGBs:	
	
	
	
ie,	the	scattering	matrix	elements	involving	a	zero-momentum	NGB	must	
vanish!	
	

lim
pµ!0

↵hf |i+ ⇡(p)i↵ = 0



The	superselection	rule	has	an	important	implication	for	the	scattering	
amplitudes	of	NGBs:	
	
	
	
ie,	the	scattering	matrix	elements	involving	a	zero-momentum	NGB	must	
vanish!	
	
Recall	in	Quantum	Mechanics	that	a	momentum	eigenstate	
	
	
Then	a	zero-momentum	eigenstate	has	a	constant	wave	function,	ie	it	
flips	the	direction	of	the	ground	state	everywhere	in	the	system:	

|~ki = eik·x

lim
pµ!0

⇡(p)|0i↵ ⇠ |0i↵0

lim
pµ!0

↵hf |i+ ⇡(p)i↵ = 0



This	implies	
	
	
	
Therefore	the	superselection	rule	tells	us	
	
	
	
	
	
This	property	of	the	NGB	scattering	amplitudes	is	derived,	in	a	different	
fashion,	in	the	context	of	pions	in	low-energy	QCD	by	Adler	in	1960’s.	
It	is	now	known	as	the	Adler’s	zero	condition.			

lim
pµ!0

|i+ ⇡(p)i↵ ⇠ |ii↵0

lim
pµ!0

↵hf |i+ ⇡(p)i↵ ⇠ ↵hf |ii↵0 = 0



In	a	quantum	field	theory,	one	can	show	that	the	Adler’s	zero	condition,	
	
	
	
follows	directly	from	the	shift	symmetry	acting	on	the	NGB:	
	
	
	
	
This	is	hardly	surprising,	as	the	shift	symmetry	is	an	indication	of	the	
existence	of	other	degenerate	ground	states!	

lim
pµ!0

↵hf |i+ ⇡(p)i↵ = 0

⇡ ! ⇡ + ✏+ · · ·



The	study	on	the	“soft	limit”	of	scattering	amplitudes	in	QFT’s	is	a	very	old	
subject,	dated	back	to	the	early	days	of	20th	century.	
	
•  In	both	Quantum	Electrodynamics	and	Gravity,	scattering	amplitudes	

with	one	soft	gauge	boson	factorize	universally:	

	
•  For	NGBs,	the	Adler’s	zero	condition	states	

	
	

lim
⌧!0

Mn+1(p1, · · · , pn; ⌧pn+1) =

✓
1

⌧
+ ⌧0 + · · ·

◆
Mn(p1, · · · , pn)

lim
⌧!0

Mn+1(p1, · · · , pn; ⌧pn+1) = O(⌧)



In	recent	years,	there	is	a	growing	community	of	theorists	working	on	
“scattering	amplitudes.”	
	
One	of	the	guiding	principles	is	to	define	a	QFT	not	by	a	Hamiltonian	or	a	
Lagrangian,	but	instead	by	its	scattering	amplitudes.		
	
	
This	raises	the	question:	
Can	we	(re)construct	the	NGB	interactions	by	imposing	the	Adler’s	zero	
condition	on	the	scattering	amplitudes?	
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“scattering	amplitudes.”	
	
One	of	the	guiding	principles	is	to	define	a	QFT	not	by	a	Hamiltonian	or	a	
Lagrangian,	but	instead	by	its	scattering	amplitudes.		
	
	
This	raises	the	question:	
Can	we	(re)construct	the	NGB	interactions	by	imposing	the	Adler’s	zero	
condition	on	the	scattering	amplitudes?	
	
This	turns	out	to	be	a	very	powerful	constraint	and	allows	us	to	construct	
the	complete	NGB	interactions	without	ever	referring	to	the	full	
symmetry	group	“G”	in	the	UV.	



To	see	how	this	works,	let’s	start	with	the	simplest	4-pt	amplitude.	
Let’s	assume	there	is	a	notion	of	“ordering”	among	the	NGBs,	then	the	
Adler’s	zero	condition		uniquely	determines	
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Let’s	assume	there	is	a	notion	of	“ordering”	among	the	NGBs,	then	the	
Adler’s	zero	condition		uniquely	determines	
	
	
	
	
	
	
Some	observations:	
•  There	is	no	constant	term	in	the	amplitude.	
•  The	notion	of	“ordering”	can	be	achieved	by	assigning	a	discrete	

quantum	number	on	the	NGB.	
•  “f”	is	a	dimensionful	parameter,	while	“c”	is	an	arbitrary	number,	

which	could	be	absorbed	into	the	normalization	of	“f”.	
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Once	we	have	the	4-pt	amplitude,	Quantum	Mechanics	implies	the	
following	contributions	to	the	6-pt	amplitude	must	exist:	
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Once	we	have	the	4-pt	amplitude,	Quantum	Mechanics	implies	the	
following	contributions	to	the	6-pt	amplitude	must	exist:	
	
	
	
	
	
	
	
	
	
	
This	expression	doesn’t	satisfy	the	Adler’s	zero	condition!	

sij = (pi + pj)
2

P 2
ijk = (pi + pj + pk)

2



The	resolution	is	to	introduce	an	additional	contribution,	the	“contact	
interaction,”	
	
	
	
	
	
	
	
It	turns	out	imposing	the	Adler’s	condition	also	uniquely	fixes	this	6-pt	
contact	interaction:	



This	process	is	then	continued	to	8-pt	amplitudes	and	so	on.		
	
In	the	end	all	“tree-level”	amplitudes	of	NGBs	can	be	reconstructed	
simply	by	assuming:	
	
•  There	is	a	notion	of	“ordering,”	which	arises	due	to	some	discrete	

quantum	numbers,	given	by	the	“unbroken	group”	H.	

•  The	vanishing	“soft	limit”	in	the	scattering	amplitudes.	

The	important	observation	here	is	that	only	IR	data	are	needed.		
It	is	not	necessary	to	know	the	full	symmetry	group	“G”,	unless	one	is	
interested	in	the	absolute	normalization	of	“f”.	
	
	
	
	

	



This	program	was	initiated	by	Susskind	and	Frye	in	1969	up	to	8-pt	
amplitude	and	completed,	Feynman-diagrammatically,	to	all	tree-
amplitudes	by	Cheung	et.	al.	in	1611.03137.	
	
	
It	turned	out	that	it	is	possible	to	construct	the	full	quantum	effective	
action	using	only	the	IR	data,	by	“completing”	the	shift	symmetry	to	
higher	orders:	
	
	
The	Lagrangian	invariant	under	the	full	shift	symmetry	is	
	
	
	
Again	the	only	free	parameter	is	the	normalization	of	“f”.	

Low:	1412.2145;	1412.2146	
Low	and	Yin:	1709.08639	



	
	
	
We	have	discovered	the	following	universality:	
	
Given	different	broken	groups	“G”	in	the	UV,	NGBs	carrying	the	same	IR	
data	will	have	identical	interactions,	up	to	the	normalization	of	“f”.	



Going	back	to	the	earlier	example,	
	
	
	
	
	
	
	
	
	
	
Both					and						carry	identical	IR	data:	
They	are	both	charged	under	a	U(1)	(sub)group	of	H.		
The	universality	then	implies	their	interactions	should	be	identical,	up	to	
the	normalization	of	“f”.		
	
	
	
	
	
	
	
	
	
	
	
	

in which case the Closure condition in Eq. (3.14) is equivalent to the Jacobi identity, thereby

allowing f iab to be interpreted as structure constants (living in the subspace spanned by

G/H).2 For a symmetric coset where fabc vanished, the knowledge of f ijk and f iab is su�cient

to reproduce the entire CCWZ Lagrangian.

In the end, the universal Lagrangian for nl�m, at the two-derivative order and all orders

in 1/f , is

L =
1

2
h@µ⇡|

sin2
p
T

T
|@µ⇡i, (3.17)

The Lagrangian is dictated by the infrared behavior of the Goldstone scattering amplitudes:

1) the Adler’s zero condition and 2) theH-invariance, without ever specifying what the broken

group G is in the UV. The only undetermined parameter is the overall normalization of the

decay constant.

To dispel any remaining doubts on the universality of Eq. (3.38), let’s consider two explicit

examples: SU(2)/U(1) and SU(5)/SO(5). The former is the minimal coset containing a

complex Nambu-Goldstone boson � charged under the unbroken U(1). For the latter, one

can obviously identify several SU(2) subgroups in SU(5) and several U(1) subgroups in

SO(5), resulting in many complex Nambu-Goldstone bosons. Denote one of them to be �.

The universality of Goldstone interactions imply interactions of � and � must be identical

with each other, which are dictated only by the unbroken U(1) and the Adler’s zero condition,

up to the normalization of the decay constant f . Using the CCWZ formalism to write down

the two-derivative interactions for � and � we obtain [3]3

SU(2)/U(1) ! |@µ�|
2
�

1

3f2
|�⇤@µ�� �@µ�

⇤
|
2 +

8

45f4
|�⇤@µ�� �@µ�

⇤
|
2
|�|2

�
16

315f6
|�⇤@µ�� �@µ�

⇤
|
2
|�|4 + · · · , (3.18)

SU(5)/SO(5) ! |@µ�|
2
�

1

48f2
|�⇤@µ�� �@µ�

⇤
|
2 +

1

1440f4
|�⇤@µ�� �@µ�

⇤
|
2
|�|2

�
1

80640f6
|�⇤@µ�� �@µ�

⇤
|
2
|�|4 + · · · , (3.19)

The interactions of � become identical to those of � after the rescaling of f ! 4f in Eq. (3.18),

as expected from the universality.

3.2 The Shift Symmetry to All Orders in 1/f

Although the closed-form expressions for Fi, i = 2, 3, 4 have been derived previously, the

general nonlinear shift F1 was presented without derivation only recently in Ref. [5]. The

simplest way to derive F1 is to make use of the universality of Eq. (3.38) and perform a

”matching” calculation into the simplest nontrivial unbroken group of H = SO(2) ⇡ U(1),

which we demonstrate below.
2The identification in Eq. (3.16) is possible only because we choose a basis such that (T i) = �(T i)T in

Eq. (3.3).
3There is a typo in Eq. (14) of Ref. [3]. The expression in Eq. (3.19) is the correct one.
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Going	back	to	the	earlier	example,	
	
	
	
	
	
	
	
	
	
	
	
If	we	make	f	à	4f	in	the	first	case,	the	two	Lagrangians	are	identical!	
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The	modern	perspective	on	NBG:	
	
•  The	Adler’s	zero	can	be	taken	as	the	defining	property	of	NGB.	

Moreover,	it	is	a	consequence	of	the	vacuum	superselection	rule.	

•  There	is	a	universality	class	for	each	NGB	carrying	the	same	charge	
under	the	unbroken	group.	

•  The	nonlinearity	in	the	NGB	interactions	arises	entirely	from	IR	
physics.	

•  What’s	being	“broken”	in	the	UV	is	irrelevant,	other	than	determining	
the	normalization	of		“f”.	

	
What	is	this	universality	good	for?	



After	the	discovery	of	the	Higgs	boson	in	2012,	many	important	questions	
remain	unanswered.	One	of	the	most	intriguing	questions	is	
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After	the	discovery	of	the	Higgs	boson	in	2012,	many	important	questions	
remain	unanswered.	One	of	the	most	intriguing	questions	is	
	

What	is	the	Higgs	made	of?	
	
	
The	question	can	be	rephrased	slightly:	
What	is	the	microscopic	theory	giving	rise	to	the	Higgs	boson	and	its	
potential?	
	
	
	
	
	
Our	colleagues	in	condensed	matter	physics	are	very	used	to	asking,	and	
studying,	this	kind	of	questions.	
	
	
	
	

V (H) = �µ
2|H|2 + �|H|4



One	of	the	most	beautiful	examples	is	the	superconductivity	discovered	in	
1911:	
	
	
	
	
	
	
	
	

	
	
	
	
	



One	of	the	most	beautiful	examples	is	the	superconductivity	discovered	in	
1911:	
	
	
	
	
	
	
	
	
Ginzburg-Landau	theory	from	1950	offered	a	macroscopic	(ie	effective)	theory	for	
conventional	superconductivity,	
	
	
	
	
	

	
	
	
	
	

V ( ) = ↵(T )| |2 + �(T )| |4 ↵(T ) ⇡ a2(T � Tc) and �(T ) ⇡ b2



One	of	the	most	beautiful	examples	is	the	superconductivity	discovered	in	
1911:	
	
	
	
	
	
	
	
	
Ginzburg-Landau	theory	from	1950	offered	a	macroscopic	(ie	effective)	theory	for	
conventional	superconductivity,	
	
	
	
What	is	the	microscopic	origin	of	the	Ginzburg-Landau	potential	for	
superconductivity?	
	
	

	
	
	
	
	

V ( ) = ↵(T )| |2 + �(T )| |4 ↵(T ) ⇡ a2(T � Tc) and �(T ) ⇡ b2



In	1957	Bardeen,	Cooper	and	Schrieffer	provided	the	microscopic	
(fundamental)	theory	that	allows	one	to	
	
1)  interpret	|Ψ|2	as	the	number	density	of	Cooper	pairs		

2)  calculate	coefficients	of	|Ψ|2	and	|Ψ|4	in	the	potential.	
	
	
	
	
	
	



In	1957	Bardeen,	Cooper	and	Schrieffer	provided	the	microscopic	
(fundamental)	theory	that	allows	one	to	
	
1)  interpret	|Ψ|2	as	the	number	density	of	Cooper	pairs		

2)  calculate	coefficients	of	|Ψ|2	and	|Ψ|4	in	the	potential.	
	
	
We	do	not	know	the	corresponding	microscopic	theory	for	the	Higgs	boson.	
	
In	fact,	we	have	NOT	even	measured	the	Ginzburg-Landau	potential	of	the	
Higgs!	
	
	
	
	
	
	



The	question	can	be	reformulated	in	terms	of	Quantum	Criticality:	



The	question	can	be	reformulated	in	terms	of	Quantum	Criticality:	

Mh=125	GeV.	We	are	sitting	extremely	
close	to	the	criticality.	WHY??	



	
One	appealing	possibility	–	the	critical	line	is	selected	dynamically,	because	
one	cannot	write	down	any	relevant	operators	giving	rise	to	the	Higgs	mass.	
	
This	is	the	analogy	of	BCS	theory	for	electroweak	symmetry	breaking.	It	goes	
by	the	name	of	“technicolor,”	which	is	strongly	disfavored	experimentally.	
	

	



	
One	appealing	possibility	–	the	critical	line	is	selected	dynamically,	because	
one	cannot	write	down	any	relevant	operators	giving	rise	to	the	Higgs	mass.	
	
This	is	the	analogy	of	BCS	theory	for	electroweak	symmetry	breaking.	It	goes	
by	the	name	of	“technicolor,”	which	is	strongly	disfavored	experimentally.	
	
The	compatibility	with	the	data	can	be	improved	by	postulating	new	global	
symmetries	above	the	weak	scale,	such	that	the	Higgs	boson	arises	as	a	
(pseudo)	Nambu-Goldstone	boson.	
è This	class	goes	by	the	name	of	“composite	Higgs	models.”	

The	other	popular	possibility	is	that	the	critical	line	is	a	locus	of	enhanced	
symmetry.	
è This	is	the	(broken)	supersymmetry.	

	



A	survey	of	composite	Higgs	models	from	several	years	ago:	

Bellazzni,	Csaki	and	Serra:1401.2457	
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It	turned	out	that	a	common	ingredient	for	pretty	much	all	viable	
compoiste	Higgs	models,	is	H	always	contains	a	SO(4)	subgroup,	under	
which	the	125	GeV	Higgs	is	the	fundamental	representation.	
	
Universality	implies	effective	interactions	of	the	125	GeV	Higgs	in	a	
composite	Higgs	model	are	identical,	up	to	the	normalization	of	“f”.	

In	particular,	we	can	show	that	the	(multi)Higgs	couplings	to	two	
electroweak	gauge	bosons	are	universal.	

Da Liu, IL and Zhewei Yin: 1805.00489; 1809.09126 



Schematically,	the	universality	predicts	that	
	
	
	
	
	
	
	
	
	
	
The	shift	symmetry	relates	all	these	different	couplings.	
Experimental	confirmation	of	the	shift	symmetry	would	be	a	striking	indication	
on	the	NGB	nature	of	the	125	GeV	Higgs	boson.	
à  Opens	up	a	new	experimental	frontier.	
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One	way	to	“detect”	the	presence	of	the	shift	symmetry	is	to	measure	HVV	
and	HHVV	couplings	to	see	if	they	are	controlled	by	the	same	parameter.	
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Some	examples	of	“Universal	Relations”	are	

=
1

2

p
1� ⇠

Z. Yin, D. Liu and IL: 1805.00489; 1809.09126  



More	generally,	the	HHVV	coupling	can	be	probed	in	the	following	channels:	



The	rate	at	future	colliders:	

�+�- → ν-�ν� � �
�+�- → � � �

��� ��� ��� ��� ��� ��� �����-�

��-�

�����

�����

�����

�

��

� [���]

σ
[�
�]

1401.7340 

This	is	the	future	frontier	of	precision	Higgs	physics!	
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•  Opened	up	new	avenues	for	future	theoretical	explorations:		
–  What	about	NGBs	in	non-relativistic	systems?	
–  What	about	NGBs	from	spontaneously	broken	spacetime	

symmetries?	
	
•  Interactions	of	a	Nambu-Goldstone	Higgs	boson	with	two	gauge	

bosons	are	dictated	by	shift	symmetry	and	universal.	

•  Testing	the	shift	symmetry	in	Higgs	couplings	could	drive	future	
experimental	programs	in	the	study	of	Higgs	boson.	

	


