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GEOMETRY FROM POSITIVITY
Let’s start with a primitive notion of positivity in physics

e The position of center of
mass

The center of mass is always "“inside” the polygon because m>0

Writing things projectively, A’:( 1 )3 U,-’:( : )

— —_

A U;

The inside of the polygon is inside the CONVEX HULL

n
Al=mU +- +wal), w>0 ) w=1
i=1




GEOMETRY FROM POSITIVITY

We can define the polygon through positivity

The line (bc) is a boundary but (ac) is not. This is
because while the hull (A) is ONLY on one side of

(bc), it can be on either side of (ac), including on (ac)

det[A, Ua, Ug] = 0

———

Thus for boundaries if must satisfy

det[A, U;, Uj] >0, VA

n
A’:w1U1’+---+wnU,’,, w; > 0, ZW;:‘i
i=1




POLYTOPE POSITIVITY

We can define the polytope through its facets. This entails:

e Determine which vectors are the vertices
« Determine which set of the vertices form facets:

Det[U;, Ua, Up] > 0 Vi

We need to compute all possible determinants to fully determine the geometry!




THE CYCLIC POLYTOPE

A new form of positivity trivializes the problem!

Let's say we have a set of vectors, with a well defined ordering. If its ordered
determinant is positive:

det[U;1,U;2,--- ’Uik]>0’ Vig <<y <l

The convex hull of U; is a cyclic polytope
e It's boundaries are known
d=2: (i,i+1), d=3: (0,i,i+1),(i,i+1,00), d=4:(,i+1,/,j+1)---
Exp: Let A= allg + bUg with a,b > 0

Det[A, Ug, Us, Uz, Ug] = 4a Det[Ue, Us, Us, U, Ua] + b Det[Ug, U, Us, U7, Ue]
da Det[U4, Us, UG) U7a U8] + b Det[U4: Us, ‘J7: UB’ Ug]
a (positive) + b (positive)




*Do we encounter convex hull problems physics?
*Do we find cyclic polytopes in such scenario?




CONVEX HULL

*Do we encounter convex hull problems physics?

Any effective field theory at low energies has a description as

1 | o
/d974§ $ + aggp” + a1(06)°¢° + az(0p)* + - -




CONVEX HULL

Any effective field theory at low energies has a description as

M (s, 1) =

In the complex plane, the couplings for the higher dimension operators are
related to the singularities and the discontinuity of its UV completion

-t-2m" o me 2me

f\f.j\f

|

Massless poles Poles  Branch cuts
l

Analvtic +

no thresholds for t<<1




CONVEX HULL

In the complex plane, the couplings for the higher dimension operators are
related to the singularities and the discontinuity of its UV completion
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— E Sn+1M(S,t)

From the origin M*E(s,t) = {massless poles} + ng,qsk_qtq,
k,q




CONVEX HULL

In the complex plane, the couplings for the higher dimension operators are
related to the singularities and the discontinuity of its UV completion
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1 ds
We can perform a contour integral I = o ! M(s,t)
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CONVEX HULL

In the complex plane, the couplings for the higher dimension operators are
related to the singularities and the discontinuity of its UV completion

s

t-2m~ -tm’ e me 2m’

" £

\
Analytic + ' \
Massless poles Poles  Branch cuts




CONVEX HULL

aGaa(l + 27722) Ga
> ntaat’ = (Ep ) KEL¥C L E) {u}).

a

Since we have no idea what the nature of the spectrum is, we do not assume

anything, a continuous spectrum can be approximated by an infinite
spectrum.

In other words, we are simply identifying

xaz.m%g pa>0

where the vectors v come from the expansion of Gegenbauer (Legendre)
polynomials.




CONVEX HULL

In other words, we are identifying

we have a convex hull!

with

Pa >0

1 1
m4
gi0 920
go,1 92,1
go.2

1

mé




CONVEX HULL

P.G¢ (1425 G¢(1+2%)
Z Intq,qt! = (Z (mz)n+1ma +Z / ds'pyp(s") e(s;)n+1 +{u} |
q a

a b

—

Put in another way, we are relating the low energy couplings to the
expansion of

£
& Ve, 01 Ve, 1 2 IVea,zﬁ
/ locality a a unitarity

We have that the coupling constants of higher dimensional operators must
line in the convex hull of TWO geometries stemming from Locality and
Unitarity




THE CYCLIC POLYTOPE

*Do we encounter convex hull problems physics?

We do! All the time! But it's useless since we always have infinite number of
vectors

*Do we find a cyclic polytope?

YES!




THE CYCLIC POLYTOPE

Recall that EFT are bounded by two geometries

Pe, (1+%§)
M(S,f) = _Zpa S—ﬂ72a

a

zp 1 (’1+ S +s2 ) (V iy t ey 12 )
= a5 N L L £5,0 £3,1 5 £4,2 4 "7
a mg mg mg locality ”’g mg unitarity

Let’s consider the matrix consists of these Taylor vectors ordered with spin

/11111 1 1 1)
10 15 21 28
189

225

S775
8
2079

!
3003

O O O Owung

All ordered determinants are positive! det[ve, ve, -] >0, Y& >8>




Changing to

~

O OO O O O O
O OO O O O Bk
O OO O O wNaNaL

~

35
4

21

63
4

15

35
2

63
315

THE CYCLIC POLYTOPE

external spinning states, correspond to operators of the form

63
2
315

105

2
693

2
1155

2
3465

RA2, RA2F FA4, ..
one finds the samel!

165
20
693
9009

!
165

!
495

4
2145

4
15015

!
495

2 2 4
6435 45045 225225

64

0
0
0

64

1001 15015

64

64
15015

64
0

0

64
1001

8
17017

32
0

32

1989
32

165 495 1287 3003 6435

16 16 16 16 16
165 715 5005 15015 5005

8 8 16 16 2

429 3003 15015 15015 51051

32 32 32 8 8
0 91 1365 1365 7735 69615

32 32 4 4 8
0 4585 7735 69615 440895

64 64 64 64
0 0 1071 20349 101745

64 64 32
0 0 0 4845 101745

=
0 0 0 198

All ordered determinants are

positive!

det[v£-1v;,2---]>0, V&g >80 > -




THE CYCLIC POLYTOPE

Recall that EFT are bounded by two geometries

t 12
Vi, 01 Ve,,1 F+V£a,2m T
locality a a

1 1 1
m4 mb
gio0 G20
go,1 92,1
go.2




THE CYCLIC POLYTOPE

Recall that EFT are bounded by two geometries

Pe, (1+%§)
M(S,f) - —Zpa S—ﬂ72a

a

Zp 1 (H— s | 2 ) (v iy t Y 1<
= a5 L £5,0 £3,1 5 £4,2 4 "7
a mg mg mg locality ”’g mg

Consider fixed mass dimension

m e e
o0 G910 Y20 G030
91,1 G921 031

oo Q32

93,3

g2.0 .
g 1 — Det[go, Ve, Ve+1] > 0
go 2




THE MAGIC OF CYCLIC POLYTOPE

Since we have cyclic polytopes, we can now fully explore the geometry
since we TRIVIALLY KNOW where all the boundaries are!

Gives bounds for the coupling of 4 and 6 derivative higher dimension operators




THE MOMENT CURVE

Recall that EFT are bounded by two geometries

Pe, (14%5)
M(s,t) = - P -

Zp 1 (H— s | s? ) (v iy t Y 12 )
- Pa—5 —t+—+-" £4,0+ Ve, 1—5+Ve,2— -
a mg mg mg locality (ng mg unitarity

Consider fixed degree in angles

1 1 1
mo o m w
1 g0 g10 G20 330
t g11 G921 331
go2 G032

33 - (1,x,x%,---,x%), xeR"

tO

The convex hull of points on a

/
>0
Pa moment curve




THE MOMENT CURVE

(1,x,x%,---,x%), xeR"

| —

Organizing the couplings for fixed t power into the Hankel matrix (g, = gk ;)

(1 ¢
g gr

\g)_1 9
It {g;} lies in the convex hull of half-moment curves, then all minors of K[g’] is positive!

(1 gi e gy /g'l g{,

| N9
i €even: Det

\g’é g'%-*_l ceoe




IMPLICATIONS |

Lets consider the standard model. In the IR we only have U(1) + gravity. Lets compactly
to 3 dimensions. The EFT for integrating out the massive states are

M 1
_ 3 / 3 E : 2

where the H.O. are in terms of field strengths, starting with

H.O. = Z Cijrl(F; - F)(F - Fy)

1,7k,

T

with the coefficients parametrized as:

_ QaigiV M3

Ciji ~ O(2*) + O(2*) + O(2°) .  with 2y =

|ma|

The all order coefficients can be computed from the one-loop four point massive
amplitude




IMPLICATIONS |

Lets consider in 3 dimensions where in the IR we only have U(1) + gravity (compactify
standard model!) The EFT for integrating out the massive states are

/d3x\/_[ R——ZFQ] +CS.+H.O.

where the H.O. are in terms of field strengths, starting with

H.O. = Z Cijrl(F; - F)(F - Fy)

1,7kl

T

with the coefficients parametrized as: (andriolo, Junghans, Noumi, shiu)

([7 3
[gzaizajzakzal + §zaz'zaj5kl — za-izakajl

+50i50k + Oir (scalars) ' vuo/Is

1
P> 1920n[m, M2 3 : = my
a [Zaizajzakzal + 24iZajOk1 — §Zaizak5jl

L —

— 1661 + 3601 (fermions) .
—————e”




IMPLICATIONS |

1. The dominant contribution is for the largest z (for charged states) and the lightest m

(for neutral states).
7 3
{ [gzaizajzakzal + §zaizaj5kl — zaizakajl

+50i;0k1 + 0ixdji] (scalars)

1
Z 19207 |m,| M2 <

3
[zaz’zajzakzal + 24iZ0j0ki — 5 ZaiZak0;i

. —30i0k + 500j1] (fermions) .

In the standard model electron has the largest z~10/22 |

2. We can get compute the coefficient to all order in derivatives from the 1-loop amp
3840

m mM—00
7(s% + st + t2 75st 7(s% + st + t?)?
_ (s+.s-|-)+ .su+($-|—s+)er+
8m? 448m 192m?®
2[10(32—|-3t+t2)2 s’ +st+1t*  5lstu
+e + +

Azne—loop'

mstu 2m3 112m?
5(s? + st +t2)?  53stu(s? + st +t?) ]

112m7 T 2112m?°

2m 28m3 T B6ms 616m7
, 5(58° + 155% + 37542 + 495" 4 87" + 155t 4 5t%) |
36608m? o

3(s? + st + 12 3stu s2 + st + t2)? 5stu(s® + st + t2
NECEE RS WCET P N TEY IR




IMPLICATIONS |

Recall that being inside the convex hull of moment curves imply:

g1

g2

Det 1t €odd: Det

This puts constraint on Z

h120)- For[l~-1, 1 <2, 144, M~ Table[Table[Listd[[1]], {i, 1+3, 241475}]), (3.0, 141)]:
Print[M // MatrixForm]; Print [ (Reduce [(Det[M] /. {z» 1)) >0] // N, 1}])
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IMPLICATIONS |

We find (at 60 derivative order)

0<z<1.14 (a) and 124.28 <z (b)

However

1351

While a asymptotes, b is linearly rising. If the coefficients are dominated by the state with
z>1.14 it is inconsistent! With electron giving z~10/22 we must have extremely
light neutral states!




IMPLICATIONS |

The inclusion of light states imply that the z independent part of the coefficients are
replaced by

Find the critical B such that the slope vanishes gives us the upper bound of the massless

states




IMPLICATIONS |

Adding nearly lying charged states with comparable z also reduces the slope




IMPLICATIONS |

In three dimensions if we have a charged state with z>>1 then

* We must have neutral states with f>1
or
* We must have closely lying charged states




IMPLICATIONS I

We can also begin to carve out the string landscape in an on-shell fashion!
Consider a string compactification where the space is

R4 R Mg

B

The world-sheet CFT is given by a product of free boson and fermions and a compact
CFT. This implies the following monodromy relations

A(2134) + ei'rr(a’k1-k2+a12)A (1234) + ez"zr(a'kl-k2+a'k2-k3+a12+a23)A(1324) — 0

Low energy consistency sets all constants to zero

A (2134) + '™ F1k2 4 (1234) 4 i@ (brrkathaks) A (1934) = O




IMPLICATIONS I

We can also begin to carve out the string landscape in an on-shell fashion!

A (2134) + '™ k1R A (1234) 4 7 (Brkathaks) 4 (1934) = (

This implies further constraint in the space of coupling constants! For exp:

/ g-1,0 g-1,-1 0 0

900 ¢(2)

g1.0 g1,1 g1,0 91‘,‘0

92,0 g2,1 g2, ¢ (4) ';ﬁ ¢ (4)

g3.0 931 932 93 930 2930—C(2)g10 2930—-C(2)g10 g30
\ 94,0 94,1 g4, C (6) g4,1 - ]_;120 + 294,1 94,1 C (6) )




IMPLICATIONS I

We can also begin to carve out the string landscape in an on-shell fashion!

A (2134) + '™ kb2 4 (1234) 4 i@ (krkathaks) A (1934) = 0

This implies further constraint in the space of coupling constants! For exp:




SUMMARY

The union of physical principles (unitarity, locality, symmetries) in the UV, defines
an IR avatar in the form of Positive geometries.

Such geometries imposes constraint on the space of coupling constants in the EFT

Examples: charge to mass ratios in 3D, tentative carving out the string landscape

Extend the analysis for high order in derivatives, multi U(1)s, grave-photon mixed
couplings

IS there much more positivity out there?

(YES!) Present for any planar Ising networks (see Pavel Galashin, Pavlo Pylyavskyy 1807.03282
Y-t H, Chia-Kai Kuo, Congkao Wen 1809.01231)

(YES!) The geometry of CF'T bootstrap (see tomorrow on arxiv :Nima Arkani-Hamed, Y-t H,
Shu-Heng-Shao )

(YES?)




