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Buchdahl's stability bound 
in general relativity (GR)

• In 1959, Buchdahl showed that for a thermodynamically 
stable self-gravitating sphere in general relativity (GR), it 
must satisfy             


• Rather than                 , this inequality provides an stricter 
bound for a star to avoid collapsing into a black hole.


• This result is profound because it is independent of the 
equation of state (EoS) of the matter contained inside the 
sphere.

H. A. Buchdahl, Phys. Rev.  116, 1027 (1959)
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Action with the 
Determinantal Form 

• An alternative proposal for the gravitational action was 
proposed by Eddington (1924). He suggested at least in 
free, de Sitter space, the fundamental field should be the 
connection


• Motivated by Born-Infeld electrodynamics, Deser and 
Gibbons (1998), discussed the possible forms of the 
gravitational analogue of Born-Infeld theory in the metric 
formalism, and the necessary conditions without running 
into the ghost problem. 

S. Deser and G. W. Gibbons, Class. Quant. Grav. 15, L35 (1998)
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Eddington-inspired  
Born-Infeld (EiBI) Gravity

• Vollick (2004) first proposed the action (in Palatini 
formalism; the metric is minimally coupled to matter)


• Banados and Ferreira (2010) have shown that it resolves 
the singularity problem in GR to some extent. This model 
is equivalent to GR in vacuum.

M. Banados and P. G. Ferreira, Phys. Rev. Lett.  105, 011101 (2010)
D. N. Vollick, Phys. Rev. D  69, 064030 (2004)
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EiBI field equations
• After varying the action w.r.t      and       independently, we 

obtain


• The auxiliary metric         is used for raising/lowering index 
in the geometric sector; the metric tensor        , on the 
other hand, is for the matter sector, hence it follows that 

g Γ

τ = |g | / |q |Tμν : energy momentum tensor

qμν
gμν

qµ⌫ = gµ⌫ + Rµ⌫
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GR-like field equations

• This field equations can be recast in GR-like field 
equations as


• Furthermore, taking the determinant of                             , 
we can express        solely in terms of         as 

qμλgλν = τ(δμ
ν − 8πκTμ

ν)

τ Tμ
ν

T. Delsate and J. Steinhoff, Phys. Rev. Lett.  109, 021101 (2012)
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Perfect fluid assumption
• If we model the self-gravitating sphere by a perfect fluid,


• We then obtain


 where                     and                      required to be positive

Tμ
ν = (ρ + p)uμuν + pδμ

ν

ρ : energy density
p : pressure
uμ : four-velocity of the fluid element with uμuμ = − 1

a ≡ 1 + 8πκρ b ≡ 1 − 8πκp

τ = [(1 + 8πκρ)(1 − 8πκp)3]−1/2 ≡ 1/ab3



Auxiliary quantities
• We can define the “auxiliary” density      and pressure    , 

respectively, in terms of      and      as follows


• The “auxiliary” quantities are still potentially singular.

ρ̃ p̃
a b

T 0
0 =

�a2 + 3b2 � 2ab3

16⇡ab3
⌘ �⇢̃
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Spherically symmetric and 
static spacetime

• For considering  a spherically symmetric and static 
spacetime, we make the Ansatz of the physical metric and 
auxiliary metric, given by 


• For perfect fluid, the relations between two sets of the 
metrics are given by


• Note that these two metrics are identical in the absence of 
matter, in which case                .

gμνdxμdxν = − e2Φ(r)dt2 + e2Λ(r)dr2 + H2(r)dΩ2

= − F2(r)dt2 + G2(r)dr2 + H2(r)dΩ2

qμνdxμdxν = − e2α(r)dt2 + e2β(r)dr2 + r2dΩ2

= − A2(r)dt2 + B2(r)dr2 + r2dΩ2 dΩ2 = dθ2 + sin2 θ dϕ2

F2 = A2ab−3 (or Φ = α +
1
2
ln a −

3
2
ln b),

G2 = B2/ab (or Λ = β −
1
2
ln a −

1
2
ln b), H2 = r2/ab

a = b = 1



Ansatz of two mass 
functions

• With the auxiliary metric at hand, if we make another Ansatz


• The tt-component of the “auxiliary’’ Einstein equation gives


• If we make another Ansatz 


together with                 , where        stands for the “physical’’ mass 
(the mass function appearing in the physical metric), we have


e2β = B2 ≡ (1 −
2m(r)

r )−1

m′�(r) = 4πr2ρ̃ ′� : derivative with respect to coordinate r

e2Λ = G2 ≡ (1 −
2M(r)

r )−1

G2 = B2/ab M(r)

M =
(1 − ab)

2
r + abm = m +

1
2

(1 − ab)(r − 2m)

m(r) : auxiliary mass function within radial distance r



Effective density corresponding to 
mass function of physical metric

• The “effective” density corresponding to         can be 
defined by                             , after some computations, 
we obtain


• We may refer this effective density as physical density 
corresponding to GR, since it contributes to the physical 
mass function.

M(r)

cs : sound speed

⇢e↵ = ab⇢̃+
(1� ab)

8⇡r2
+



2r

✓
1� 2m

r

◆✓
a2c2s � b2

ab

◆
d⇢

dr
.
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Monotonicity of energy 
density

• Is there a similar bound in EiBI?


• A crucial assumption in proving Buchdahl's stability 
bound in GR is the “monotonically decreasing” property 
of the physical density     . However, in EiBI the question 
turns out to be which density we should demand its 
monotonicity in order to minimize our assumptions.


• In other words, we have three types of density     ,        
and         in this model, is the monotonically decreasing        
enough to imply the same monotonic behavior of              
and                ?

ρ

ρ ρ̃
ρ

ρ̃(ρ, p)
⇢e↵
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Monotonicity of auxiliary 
density

• To figure out that, let us take the derivative of      with 
respect to     , we have


• The constraint                                               is required to 
guarantee the monotonic decreasing of      once       is so. 


• For           , there is no question from this condition if the 
null energy conditions hold                 , however, the 
potential pathologies of            may still exist.

ρ̃
r

dρ̃
dr

= [3a2(a2 − b2)c2
s + (3b2 + a2)b2

4a3b5 ] dρ
dr

.

24πκ(ρ + p)a2c2
s + (3b2 + a2)b2 > 0

ρ̃ ρ

κ > 0
ρ + p ≥ 0

κ < 0



Monotonicity of effective 
density

• For effective density          corresponding to         , the 
expression is much more complicated. 


• Here, we just assume          is a monotonically decreasing 
function and to see what it leads to.


• If         is a monotonically decreasing function, then

M(r)

rs : the radius of the star at which p(rs) = 0

⇢e↵
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Dual relation between two 
mass functions

• (1) If           is a monotonic decreasing function, then


• (2) If         is a monotonic decreasing function, then


where we have used the fact that                           at the 
surface (                 ) of the star.

ρ̃

a = b = 1

⇢e↵
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Which one is the stronger 
assumption?

• From these two inequalities, we see the dual relations 
between two mass functions. For not forming a black hole, 
we must have                       (also,                    ) throughout the 
interior of the star. 


• The sign of the extra terms (which are absent in GR limit            
) in the inequalities depends on             or             .


• If              , (1) is stronger than (2), i.e. the decreasing 
monotonicity of           can imply                        but (2) cannot. 


• In contrast, if             , (2) is stronger than (1) since (2) gives a 
more stringent inequality than                     .

r − 2m(r) > 0 r − 2M(r) > 0

a = b = 1
ab > 1 ab < 1

ab > 1

ab < 1

⇢e↵
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Equation of state (EoS) 
matters!

• When proving the Buchdahl's stability bound, we will use 
the stronger assumption depending on which region (         
or             ) we are considering. 


• These conditions depend on the EoS inside the star and 
will affect the Buchdahl's stability bound in contrast to GR 
(which is independent of the EoS):

ab > 1
ab < 1

⇢

1 + 8⇡⇢
> p or

⇢

1 + 8⇡⇢
< p
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Buchdahl's stability bound 
in EiBI



Remarks
• If              throughout the interior of the sphere,     is positive 

definite. This means the lower bound of the stable radius in 
EiBI is larger than GR.


• By expansion in terms of the order of      , we have


E.g. for neutron star, the typical density                         with


yielding


• For            , the proof goes similarly but with different mass 
inequality in use ( the one which is stronger for           ). The 
result is the same as GR,                    .

ab > 1

ab < 1
ab < 1

rs � (9/4)M
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An Intuitive Explanation: 
Repulsive effect of EiBI

• The intuitive explanation is the EoS “switch-on” of the “repulsive effect” 
in EiBI gravity.


• It becomes clear by expanding the auxiliary quantities


• We observe that the repulsive effect (              and              ) in EiBI is 
significant only when


• Otherwise, we will have             and              the repulsive effect reduces.


ρ̃ = ρ − πκ(5ρ2 − 6ρp − 3p2) + 𝒪(κ2),
p̃ = p + πκ(ρ2 + 2ρp + 9p2) + 𝒪(κ2) .

ρ̃ < ρ p̃ > p

ρ > [(3 + 2 3)/5]p ≃ 1.29p

ρ̃ > ρ p̃ > p



An Intuitive Explanation: 
Repulsive effect of EiBI

• When including all order of      , 
the former case corresponds to                 
and the latter corresponds to          


• The borderline near           
marks              , where the 
repulsive effect switches on/off. 


• Moreover, as we shall see, the 
critical value             
determining the borderline of 
the repulsive effect 
corresponds to an exotic EoS.

κ
ab > 1

ab < 1

ab ≃ 1
ρ̃ ≃ ρ

ab = 1

5
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FIG. 1. Blue (Left) region: ab � 1 (with 1.1 < a < 1.2 and
0.942 < b < 1.0) v.s. Purple (Right) region: ab � 1 (with
1.0 < a < 1.1 and 0.85 < b < 0.942). The borderline near
ab � 1 marks ⇢̃ � ⇢, where the repulsive e↵ect is about to be
significant or insignificant regions.

The “singularity avoidance” feature of this model [14]
relies on the fact that as b → 0, i.e. 8⇡p → 1, the auxil-
iary energy density and pressure diverges but with finite
physical energy density and pressure. In this regard, 
can be taken as a cuto↵ scale near the Planck scale. How-
ever, as we noted previously, if we assume b ≠ 0, inside
the star (since we expect things inside a compact star are
still far from Planck scale even at the center of the star),
⇢e↵ is still potentially divergent due to (1 − ab)�8⇡r2 as
r → 0. The remedy to cure the pathology is to set ab = 1,
or equivalently

p =
⇢

1 + 8⇡⇢
, (26)

near r = 0. Physically, this leads to an exotic EoS con-
trolled by  near the center (r �

√
) of a star regardless

of the real matter contents. In this exotic EoS, the phys-
ical pressure p is bounded by 1�8⇡, however, there is no
bound on the physical density ⇢ (p → 1�8⇡ as ⇢ → ∞).
In other words, the cuto↵ of the physical pressure does
not prevent the divergence of the physical density, see
Fig. 2. Put the other way around, we can pump en-
ergy indefinitely into the center of the star but with a
finite upper bound of pressure. Remarkably, this situa-
tion is in close analogy to the Hagedorn temperature [16]
in string theory [17], in which the energy and entropy
diverge but with a fixed and finite (Hagedorn) tempera-
ture. This exotic EoS manifests somewhat deep connec-
tion of EiBI with string theory, which deserves further
scrutinies. However, the discussions above are only at
the classical level, the pressure near the cuto↵ scale may
signal the breakdown of EiBI or a Hagedorn-like phase
transition. Whether this divergence of ⇢ really occurs
during the gravitational collapse requires further under-
standing of EiBI or even the quantized version of it.

Surprisingly, this exotic EoS simplifies the auxiliary
EoS to a sti↵ form (Zel’dovich EoS) [18, 19] p̃ = ⇢̃ =

(1 + 4⇡⇢)⇢. If the coupling of gravity to matter in GR

0 10 20 30 40 50
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8pkr
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FIG. 2. Exotic EoS with an upper bound of pressure that is
unreachable. This phenomenon is analogous to the e↵ect of
Hagedorn temperature.

is falsely assumed and the quantities we can observe are
auxiliary quantities (dubbed as “apparent” quantities in
Ref. [14]), this apparent EoS may be the one we can
actually probe. Zel’dovich EoS is valid for the densi-
ties significantly much higher than the nuclear densities,
however, it emerges as a generic feature of EiBI. If EiBI
gives the proper description of gravitationally collapse
(perhaps emerging into a baby universe), it may explain
the “quiescent cosmology singularities” [19–21] naturally,
i.e. (near the singularities) only if the EoS for high den-
sity matter tends to this sti↵ form might such an initially
isotropic and homogeneous universe be stable and proba-
ble, suggested by Barrow (1978) [19].

It should be stressed that this exotic EoS and the cor-
responding apparent EoS arise from the attempt to avoid
pathologies in the structure of EiBI, those of which do not
appear in GR (the EoS is not entangled with gravity). In
this regard, EiBI gravity sheds new light on how gravity
is entangled with matter EoS in high density regime. Ad-
ditionally, the strongest constraint on  � 109 m2 comes
from the neutron stars [22, 23], in which the typical den-
sity (∼ 1018 kg m−3) corresponds to that of the early
universe of age 10−6 s (the start of the hadron era). How
this exotic EoS a↵ects the structure of the very early uni-
verse during and before the hadron era requires further
detailed investigations.

Buchdahl’s stability bound in EiBI is larger than
(9�4)M of GR due to the repulsive e↵ect if ab > 1 holds
throughout a star. If we believe EiBI gravity is a viable
theory down to the cuto↵ scale  and the observed min-
imal stable radius of a spherical compact object is found
to be less or equal to (9�4)M, it indicates somewhat un-
usual EoS (ab < 1) is contained inside the compact object.
It sheds new light on how we can probe the EoS contained
inside a compact star just by examining the smallest sta-
ble radius of it. However, Buchdahl’s stability bound will
be modified further (as in GR) if an anisotropic fluid is
considered. Such a situation merits further investigations
for future study.



Singularity avoidance and 
pathologies in EiBI

• The “singularity avoidance” feature of this model (Delsate and Steinhoff) 
relies on the fact that as          ,i.e.                , the “auxiliary” energy 
density and pressure diverges but with finite “physical” energy density 
and pressure. 


• In this regard,     can be taken as a “cutoff scale” near the Planck scale, 
where the non-perturbative quantum gravity effects become important.


• However, as we noted previously, if we assume            , inside the star 
(since we expect things inside a compact star are still far from Planck 
scale even at the center of the star),           


is still potentially divergent due to                          as                . 

b → 0 8πκp → 1

κ

b ≠ 0

(1 − ab)/8πr2 r → 0

T. Delsate and J. Steinhoff, Phys. Rev. Lett.  109, 021101 (2012)
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An exotic EoS sharing the similarity 
with the Hagedorn temperature

• The remedy to cure the pathology is to set                  
, or equivalently 


                                     , near             .


• Physically, this leads to an exotic EoS 
controlled by      near the center (               ) of 
a star “regardless” of the real matter contents.


• In this exotic EoS, the physical pressure is 
bounded by               , however, there is no 
bound on the physical density.


• Gibbons (2002) has shown a similar EoS in a 
Born-Infeld string model.


ab = 1

p =
ρ

1 + 8πκρ r = 0

κ r ≲ κ

1/8πκ

5

-0 .05 0 .00 0 .05
0 .00

0 .02

0 .04

0 .06

0 .08

0 .10

0 .12

0 .14

8pkHré-rL

8p
kHp
é -
pL

FIG. 1. Blue (Left) region: ab � 1 (with 1.1 < a < 1.2 and
0.942 < b < 1.0) v.s. Purple (Right) region: ab � 1 (with
1.0 < a < 1.1 and 0.85 < b < 0.942). The borderline near
ab � 1 marks ⇢̃ � ⇢, where the repulsive e↵ect is about to be
significant or insignificant regions.

The “singularity avoidance” feature of this model [14]
relies on the fact that as b → 0, i.e. 8⇡p → 1, the auxil-
iary energy density and pressure diverges but with finite
physical energy density and pressure. In this regard, 
can be taken as a cuto↵ scale near the Planck scale. How-
ever, as we noted previously, if we assume b ≠ 0, inside
the star (since we expect things inside a compact star are
still far from Planck scale even at the center of the star),
⇢e↵ is still potentially divergent due to (1 − ab)�8⇡r2 as
r → 0. The remedy to cure the pathology is to set ab = 1,
or equivalently

p =
⇢

1 + 8⇡⇢
, (26)

near r = 0. Physically, this leads to an exotic EoS con-
trolled by  near the center (r �

√
) of a star regardless

of the real matter contents. In this exotic EoS, the phys-
ical pressure p is bounded by 1�8⇡, however, there is no
bound on the physical density ⇢ (p → 1�8⇡ as ⇢ → ∞).
In other words, the cuto↵ of the physical pressure does
not prevent the divergence of the physical density, see
Fig. 2. Put the other way around, we can pump en-
ergy indefinitely into the center of the star but with a
finite upper bound of pressure. Remarkably, this situa-
tion is in close analogy to the Hagedorn temperature [16]
in string theory [17], in which the energy and entropy
diverge but with a fixed and finite (Hagedorn) tempera-
ture. This exotic EoS manifests somewhat deep connec-
tion of EiBI with string theory, which deserves further
scrutinies. However, the discussions above are only at
the classical level, the pressure near the cuto↵ scale may
signal the breakdown of EiBI or a Hagedorn-like phase
transition. Whether this divergence of ⇢ really occurs
during the gravitational collapse requires further under-
standing of EiBI or even the quantized version of it.

Surprisingly, this exotic EoS simplifies the auxiliary
EoS to a sti↵ form (Zel’dovich EoS) [18, 19] p̃ = ⇢̃ =

(1 + 4⇡⇢)⇢. If the coupling of gravity to matter in GR
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FIG. 2. Exotic EoS with an upper bound of pressure that is
unreachable. This phenomenon is analogous to the e↵ect of
Hagedorn temperature.

is falsely assumed and the quantities we can observe are
auxiliary quantities (dubbed as “apparent” quantities in
Ref. [14]), this apparent EoS may be the one we can
actually probe. Zel’dovich EoS is valid for the densi-
ties significantly much higher than the nuclear densities,
however, it emerges as a generic feature of EiBI. If EiBI
gives the proper description of gravitationally collapse
(perhaps emerging into a baby universe), it may explain
the “quiescent cosmology singularities” [19–21] naturally,
i.e. (near the singularities) only if the EoS for high den-
sity matter tends to this sti↵ form might such an initially
isotropic and homogeneous universe be stable and proba-
ble, suggested by Barrow (1978) [19].

It should be stressed that this exotic EoS and the cor-
responding apparent EoS arise from the attempt to avoid
pathologies in the structure of EiBI, those of which do not
appear in GR (the EoS is not entangled with gravity). In
this regard, EiBI gravity sheds new light on how gravity
is entangled with matter EoS in high density regime. Ad-
ditionally, the strongest constraint on  � 109 m2 comes
from the neutron stars [22, 23], in which the typical den-
sity (∼ 1018 kg m−3) corresponds to that of the early
universe of age 10−6 s (the start of the hadron era). How
this exotic EoS a↵ects the structure of the very early uni-
verse during and before the hadron era requires further
detailed investigations.

Buchdahl’s stability bound in EiBI is larger than
(9�4)M of GR due to the repulsive e↵ect if ab > 1 holds
throughout a star. If we believe EiBI gravity is a viable
theory down to the cuto↵ scale  and the observed min-
imal stable radius of a spherical compact object is found
to be less or equal to (9�4)M, it indicates somewhat un-
usual EoS (ab < 1) is contained inside the compact object.
It sheds new light on how we can probe the EoS contained
inside a compact star just by examining the smallest sta-
ble radius of it. However, Buchdahl’s stability bound will
be modified further (as in GR) if an anisotropic fluid is
considered. Such a situation merits further investigations
for future study.

G. W. Gibbons, Grav. Cosmol. 8, 2 (2002)
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An exotic EoS sharing the similarity 
with the Hagedorn temperature

• Remarkably, this situation is in close analogy to the 
Hagedorn temperature ( Hagedorn(1965) Nuovo Cim.Suppl), 
in which the energy and entropy diverge but with a fixed and 
finite (Hagedorn) temperature.


• However, the discussions above are only at the classical 
level, the pressure near the “cutoff scale” may signal the 
breakdown of EiBI or a Hagedorn-like phase transition  
( Atick and Witten (1988) NPB). 


• Whether this divergence of       really occurs during the 
gravitational collapse requires further understanding of EiBI 
or even the quantized version of it.

ρ

R. Hagedorn, Nuovo Cim. Suppl.  3, 147 (1965)

J. J. Atick and E. Witten, Nucl. Phys. B  310, 291 (1988)



Conclusions
• The proof relies on assuming the monotonically decreasing 

property of effective density           , which corresponds to 
physical mass function in GR. 


• This assumption may restrict the possible classes of EoSs 
due to the highly nonlinear matter coupling in EiBI gravity.


• The Buchdahl's stability bound in EiBI depends on the EoSs 
contained inside the self-gravitating spheres.


• A Hagedorn-like EoS at the center of the star during collapse 
may trigger some unknown Hagedorn-like phase transition.

⇢e↵
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