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Buchdahl's stability bound
In general relativity (GR)

e In 1959, Buchdahl showed that for a thermodynamically
stable self-gravitating sphere in general relativity (GR), it

must satisfy > (9/4) M r. : radius of the sphere

M : mass parameter of the sphere

e Rather than s > 2.M., this inequality provides an stricter
bound for a star to avoid collapsing into a black hole.

e This result is profound because it is independent of the
equation of state (EoS) of the matter contained inside the

sphere.

H. A. Buchdahl, Phys. Rev. 116, 1027 (1959)



Action with the
Determinantal Form

e An alternative proposal for the gravitational action was
proposed by Eddington (1924). He suggested at least in
free, de Sitter space, the fundamental field should be the

connection g, i = 2_; / d*zr/—det(R(T)

e Motivated by Born-Infeld electrodynamics, Deser and
Gibbons (1998), discussed the possible forms of the
gravitational analogue of Born-Infeld theory in the metric
formalism, and the necessary conditions without running
into the ghost problem.

A. S. Eddington, The Mathematical Theory of Relativity (1924)
M. Born and L. Infeld, Proc. Roy. Soc. Lond. A 144, no. 852, 425 (1934)

S. Deser and G. W. Gibbons, Class. Quant. Grav. 15, L35 (1998)



Eddington-inspired
Born-Infeld (EiBl) Gravity

e \ollick (2004) first proposed the action (in Palatini
formalism; the metric is minimally coupled to matter)

SEiBI[gy F] = i d*z {\/—det(g —+ RR(F)) — )\\/—det(g) + Sy [g, \If]

87k

e Banados and Ferreira (2010) have shown that it resolves
the singularity problem in GR to some extent. This model
Is equivalent to GR in vacuum.

D. N. Vollick, Phys. Rev. D 69, 064030 (2004)
M. Banados and P. G. Ferreira, Phys. Rev. Lett. 105, 011101 (2010)



EiBl field equations

e After varying the action w.r.t g and |' independently, we
obtain  quv = Guv + KR yw

q"" = t(g"" — 8nrTH")

T* . energy momentum tensor t=4/1gl/]q]

* The auxiliary metric {¢,, is used for raising/lowering index
in the geometric sector; the metric tensor §,,, on the
other hand, is for the matter sector, hence it follows that

o, — kKR!, = qW‘g)\V = 7(6", — 8wkTH,)



GR-like field equations

e This field equations can be recast in GR-like field
equations as

1
G",lql = R!, — 55"“”72 = 8w (71", + Pé",) = 8xTH,

T—1 7T , .
— — : isotropic pressure addition
STk 2

T, : auxiliary energy momentum tensor

P =

e Furthermore, taking the determinant of ¢**g,, = #«(&*, — 8zxT*)),
we can express T solely interms of 7" as

T = |det(6", — 8wrkT" )|

N

T. Delsate and J. Steinhoff, Phys. Rev. Lett. 109, 021101 (2012)



Perfect fluid assumption

e |f we model the self-gravitating sphere by a perfect fluid,
", = (p + p)u*u, + pé*,

p . energy density
p . pressure

u* : four-velocity of the fluid element with v/, = -1

e \We then obtain
7 = [(1 + 8zxp)(1 — 8zkp)’]™V? = 1/ab’

where a=4/T+8zxp and »=+/T-8zxp required to be positive



Auxiliary quantities

e We can define the “auxiliary” density 0 and pressure P,
respectively, in terms of dd and b as follows

—a?® + 3b% — 2ab° .
T = 3 = P
16mrab
; a® +b* — 2ab®>
sz =P

167 Kkab3

e The “auxiliary” quantities are still potentially singular.



Spherically symmetric and
static spacetime

 For considering a spherically symmetric and static
spacetime, we make the Ansatz of the physical metric and

auxiliary metric, given by

g, dx"dx" = — e*P0dt> + e2M0dr? + H*(r)dQ?
= — FA(ndt* + G*(rdr* + H*(r)dQ*

q,,dx"dx" = — e**dt* + e*PDdr? + r*dQ?
= — A%(r)dt* + B*(r)dr* + r’dQ?
* For perfect fluid, the relations between two sets of the
metrics are given by
3

1
F?’=A%ab™> (or ®=a+—Ina—-—=1Inb),

12 12 2 _ 2
G? = B?*/ab (or Azﬂ_zlna_ilnb)’ H*=r"/ab

dQ? = db? + sin® 0 d¢*?

e Note that these two metrics are identical in the absence of
matter, in which case a=5b6=1.



Ansatz of two mass
functions

e With the auxiliary metric at hand, if we make another Ansatz

B 2m(r)

¥ =p2=(1-202) - o
- - m(r) : auxiliary mass function within radial distance r

* The tt-component of the “auxiliary” Einstein equation gives

m’ ( r) — 4717'2’5 - derivative with respect to coordinate r

2M(r)

r

)—1

together with G* = B*/ab, where M(r) stands for the “physical” mass
(the mass function appearing in the physical metric), we have

M (1 — ab)

* If we make another Ansatz ¢** = G* = (1

1
r+ abm = m+5(1 — ab)(r — 2m)



Effective density corresponding to
mass function of physical metric

e The “effective” density corresponding to M(r) can be

defined by pett = M'(r)/47r? | after some computations,
we obtain

1 — 9 2.2 _ 12
,Oeﬂ-‘:abﬁ}( ab) | /ﬁ:(l__m)(a C: b)dp

8?2 2r r ab dr

c, : sound speed
e \We may refer this effective density as physical density

corresponding to GR, since it contributes to the physical
mass function.




Monotonicity of energy
density

e |s there a similar bound in EiBI?

e A crucial assumption in proving Buchdahl's stability
bound in GR is the “monotonically decreasing” property
of the physical density P2 . However, in EiBl the question
turns out to be which density we should demand its
monotonicity in order to minimize our assumptions.

e In other words, we have three types of density £, P
and Peff in this model, is the monotonically decreasing p
enough to imply the same monotonic behavior of p(p, p)

and pe (0, p)?



Monotonicity of auxiliary
density

e To figure out that, let us take the derivative of p with
respect to r, we have

dp  [3a*(@*—b*c; + (3b*+a*)b*] dp
dr 4a3b3 dr

e The constraint 24zx(p +p)a’c; + (30> +a*b*>0 s required to
guarantee the monotonic decreasing of p once p Is so.

e For x> 0, there is no question from this condition if the

null energy conditions hold p + p > 0, however, the
potential pathologies of x < 0 may still exist.



Monotonicity of effective
density

e [or effective density Peff corresponding to M(r) , the

expression is much more complicated.
W. X. Feng, C. Q. Geng and L. W. Luo, arXiv:1810.06753 [gr-qc]

e Here, we just assume Peff Is a monotonically decreasing
function and to see what it leads to.

e |f Peff IS @ monotonically decreasing function, then

w

r
M (T) > _3M r, : the radius of the star at which p(r,) =0
S

M= M(ry)

=



Dual relation between two
mass functions

e (1) If Peff is a monotonic decreasing function, then

1 3
m(r) + 5(1 = ab)r — 2m(r)] = M
TS
e (2)If QP is a monotonic decreasing function, then
1 P
| —1)r—2M > —
M(r) + 5—(ab—1)[r (r)] = Tgf\/l

where we have used the fact that m(r,) = M(r,) = M at the
surface (a = b = 1) of the star.



Which one iIs the stronger
assumption?

e From these two inequalities, we see the dual relations
between two mass functions. For not forming a black hole,
we must have r—-2m(r) >0 (also, r—2M(r) > 0) throughout the

Interior of the star.

e The sign of the extra terms (which are absent in GR limita =5 =1
) in the inequalities depends onab > 1 or ab < 1.

* If ab>1,(1)is stronger than (2), i.e. the decreasing
monotonicity of Peff canimply am(r)> M but (2) cannot.
TS
e In contrast, if ab < 1, (2) is stronger thagn (1) since (2) gives a

more stringent inequality than ar(r) > Z M.
TS



Equation of state (EoS)
matters!

e When proving the Buchdahl's stability bound, we will use
the stronger assumption depending on which region (ab > 1
or ab < 1) we are considering.

e These conditions depend on the EoS inside the star and
will affect the Buchdahl's stability bound in contrast to GR
(which is independent of the EoS):

P > D Oor
1+ 8mkp 1+ 3mkp

<P



Buchdahl's stability bound
in EIBI

Theorem. If (i) both p and p.g are finite and monotonic
decreasing functions and (ii) A* and B? are positive def-
inite, the Buchdahl’s stability bound in EiBI gravity for
ab>1 is given by

1 1,)_9
J1-2g-2¢%]2 M,
7“( 29 29) M

where

M s ab-1
Elr—3‘£ \/1 2T2M7‘d7’.



Remarks

e If ab > 1throughout the interior of the sphere, g is positive
definite. This means the lower bound of the stable radius in
EiBl is larger than GR.

* By expansion in terms of the order of K , we have
rs/2M >9/8 4+ (37/8)k(p — p) + O(k?)
E.qg. for neutron star, the typical density 5 ~ 10'® kg/m*® with M ~ 3 km

yielding & < 10°m?

e For ab < 1, the proof goes similarly but with different mass
inequality in use ( the one which is stronger for ab < 1). The
result is the same as GR, rs > (9/4) M.



An Intuitive Explanation:
Repulsive effect of EIBI

The intuitive explanation is the EoS “switch-on” of the “repulsive effect”
iIn EIBI gravity.

It becomes clear by expanding the auxiliary quantities

p = p —ak(5p> — 6pp — 3p*) + O(x>),
p=p+ax(p®+2pp + %) + O?).

We observe that the repulsive effect ( 7 <p and P >p )inEiBlis
significant only when - (3 4 24/3)/51p ~ 1.29p

Otherwise, we willhave p>p and P >p the repulsive effect reduces.



An Intuitive

Explanation:

Repulsive effect of EIBI

e When including all order of K,

the former case corresponds to ab >1
and the latter corresponds to ab <1 o

e The borderline near ab ~ 1
marks p =~ p , where the
repulsive effect switches on/off.

* Moreover, as we shall see, the
critical value ab = 1
determining the borderline of
the repulsive effect
corresponds to an exotic EoS.

0.12F

0.10 -

0.08 "

8k(p —p)

0.06 "

0.04

0.02"

0.00 -,

-0.05 0.00 0.05
8tk (p—p)

FIG. 1. Blue (Left) region: ab 2 1 (with 1.1 < a < 1.2 and
0.942 < b < 1.0) v.s. Purple (Right) region: ab < 1 (with
1.0 < a < 1.1 and 0.85 < b < 0.942). The borderline near
ab ~ 1 marks p ~ p, where the repulsive effect is about to be
significant or insignificant regions.



Singularity avoidance and
pathologies in EiBI

* The “singularity avoidance” feature of this model (Delsate and Steinhoff)
relies on the fact that as b — 0,i.e. 8zxp — 1, the “auxiliary” energy
density and pressure diverges but with finite “physical” energy density

and pressure. 1 pelsate and J. Steinhoff, Phys. Rev. Lett. 109, 021101 (2012)

e |n this regard, K can be taken as a “cutoff scale” near the Planck scale,
where the non-perturbative quantum gravity effects become important.

e However, as we noted previously, if we assume b # 0, inside the star
(since we expect things inside a compact star are still far from Planck
scale even at the center of the star),

1 —ab 2 2¢2 — b2\ d
g (2 am) (Y

2 2r r ab dr

s still potentially divergent due to(1 — ab)/8ar?as r — ().



An exotic EoS sharing the similarity
with the Hagedorn temperature

The remedy to cure the pathology is to set ab =1
, Or equivalently

P

p_1+8m<p ,near r = 0.

Physically, this leads to an exotic E0S I
controlled by K near the center (1 S \/l_c) of Ho
a star “regardless” of the real matter contents. f

In this exotic Eo0S, the physical pressure is
bounded by 1/87Kk , however, there is no ,
bound on the physical density. 0.4

Gibbons (2002) has shown a similar EoS in a 0.2
Born-Infeld string model. *

0'0 | I I I I

8nkp

FIG. 2. Exotic EoS with an upper bound of pressure that is
unreachable. This phenomenon is analogous to the effect of
Hagedorn temperature.

G. W. Gibbons, Grav. Cosmol. 8, 2 (2002)



An exotic EoS sharing the similarity
with the Hagedorn temperature

* Remarkably, this situation is in close analogy to the
Hagedorn temperature ( Hagedorn(1965) Nuovo Cim.Suppl),
in which the energy and entropy diverge but with a fixed and

finite (Hagedorn) temperature.
R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965)

* However, the discussions above are only at the classical
level, the pressure near the “cutoff scale” may signal the
breakdown of EiBl or a Hagedorn-like phase transition
( Atick and Witten (1988) NPB).
J. J. Atick and E. Witten, Nucl. Phys. B 310, 291 (1988)
* Whether this divergence of () really occurs during the
gravitational collapse requires further understanding of EiBI
or even the quantized version of it.



Conclusions

The proof relies on assuming the monotonically decreasing
property of effective density pPeff , which corresponds to
physical mass function in GR.

This assumption may restrict the possible classes of EoSs
due to the highly nonlinear matter coupling in EiBI gravity.

The Buchdahl's stability bound in EiBl depends on the EoSs
contained inside the self-gravitating spheres.

A Hagedorn-like EoS at the center of the star during collapse
may trigger some unknown Hagedorn-like phase transition.



