

SUSY Inverse Seesaw gives Thermal Sneutrino Dark Matter

Hiroyuki Ishida (NCTS)

@ NCTS Annual Theory Meeting 2018: Particles, Cosmology and Strings 2018/12/18

> Collaborators: Jung Chang (Chonnam Natl, U.) Kingman Cheung (NTHU) Chih-Ting Lu (NTHU) Martin Spinrath (NTHU) Yue-Lin Sming Tsai (AS) Refs: 1707,04374, 1806,04468

Why do we need to extend the SM?

- Neutrino masses
- Gauge hierarchy problem
- DM candidate
- Gauge coupling unification

Why do we need to extend the SM?

- Neutrino masses
- Gauge hierarchy problem
- DM candidate
- Gauge coupling unification

MSSM+type-I seesaw mechanism

Problems can be solved, but type-I seesaw requires Majorana mass scale at 10^{12-16}GeV

Why do we need to extend the SM?

- Neutrino masses
- Gauge hierarchy problem
- DM candidate
- Gauge coupling unification

MSSM+type-I seesaw mechanism

Problems can be solved, but type-I seesaw requires Majorana mass scale at $10^{12-16} {
m GeV}$ How small Majorana mass is possible?

There are lots of alternative ideas • Inverse seesaw (ISS) mechanism [Mohapatra (1986); Mohapatra and Valle (1986)]

There are lots of alternative ideas • Inverse seesaw (ISS) mechanism [Mohapatra (1986); Mohapatra and Valle (1986)]

By using another gauge singlet

 $-\mathcal{L} \supset y_{\nu} \bar{L} H \nu_R + M_N \overline{\nu_R^C} \nu_R + M_S S S + \mu \nu_R S + \text{h.c}$

There are lots of alternative ideas • Inverse seesaw (ISS) mechanism [Mohapatra (1986); Mohapatra and Valle (1986)]

By using another gauge singlet

 $-\mathcal{L} \supset y_{\nu} \bar{L} H \nu_R + M_N \overline{\nu_R^C} \nu_R + M_S S S + \mu \nu_R S + \text{h.c}$

Neutrino mass matrix

 $M_{\nu} = \begin{pmatrix} 0 & y_{\nu} v_{\rm EW} & 0 \\ y_{\nu}^{T} v_{\rm EW} & M_{N} & \mu \\ 0 & \mu & M_{S} \end{pmatrix} \longrightarrow m_{\nu} = -\frac{y_{\nu} v_{\rm EW} M_{S} y_{\nu}^{T} v_{\rm EW}}{\mu^{2}}$

Small M_S (Lepton # violation) leads tiny m_v

Assumption in most of works

technically naturalness

$$M_{\nu} = \begin{pmatrix} 0 & y_{\nu} v_{\rm EW} & 0 \\ y_{\nu}^{T} v_{\rm EW} & 0 & \mu \\ 0 & \mu & M_{S} \end{pmatrix}$$

Assumption in most of works

technically naturalness

$$M_{\nu} = \begin{pmatrix} 0 & y_{\nu} v_{\rm EW} & 0 \\ y_{\nu}^{T} v_{\rm EW} & 0 & \mu \\ 0 & \mu & M_{S} \end{pmatrix}$$

Assumption in most of works

technically naturalness

$$M_{\nu} = \begin{pmatrix} 0 & y_{\nu} v_{\rm EW} & 0 \\ y_{\nu}^{T} v_{\rm EW} & 0 & \mu \\ 0 & \mu & M_{S} \end{pmatrix}$$

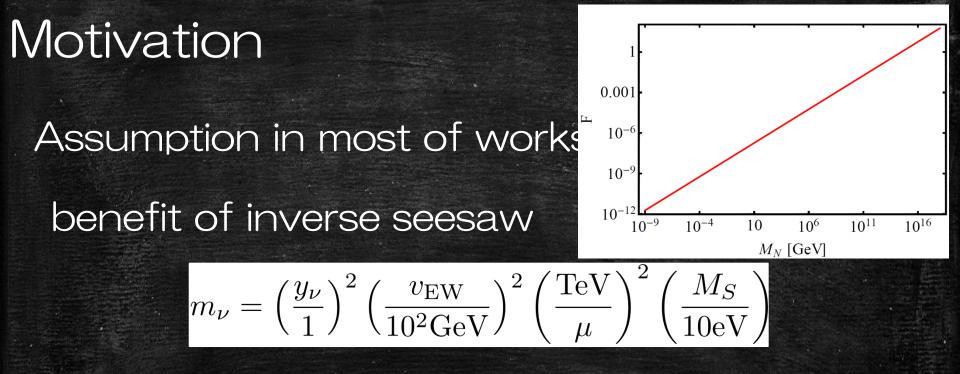
when $M_S \rightarrow 0$ lepton # sym. is recovered

smallness of M_S is technically natural

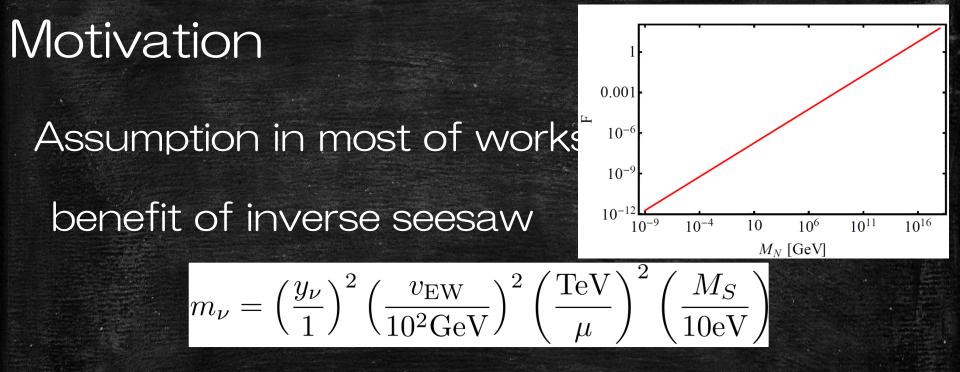
Assumption in most of works

benefit of inverse seesaw

$$m_{\nu} = \left(\frac{y_{\nu}}{1}\right)^2 \left(\frac{v_{\rm EW}}{10^2 {\rm GeV}}\right)^2 \left(\frac{{\rm TeV}}{\mu}\right)^2 \left(\frac{M_S}{10 {\rm eV}}\right)$$



extension at TeV scale with O(1) Yukawa Rich phenomenology at collider!



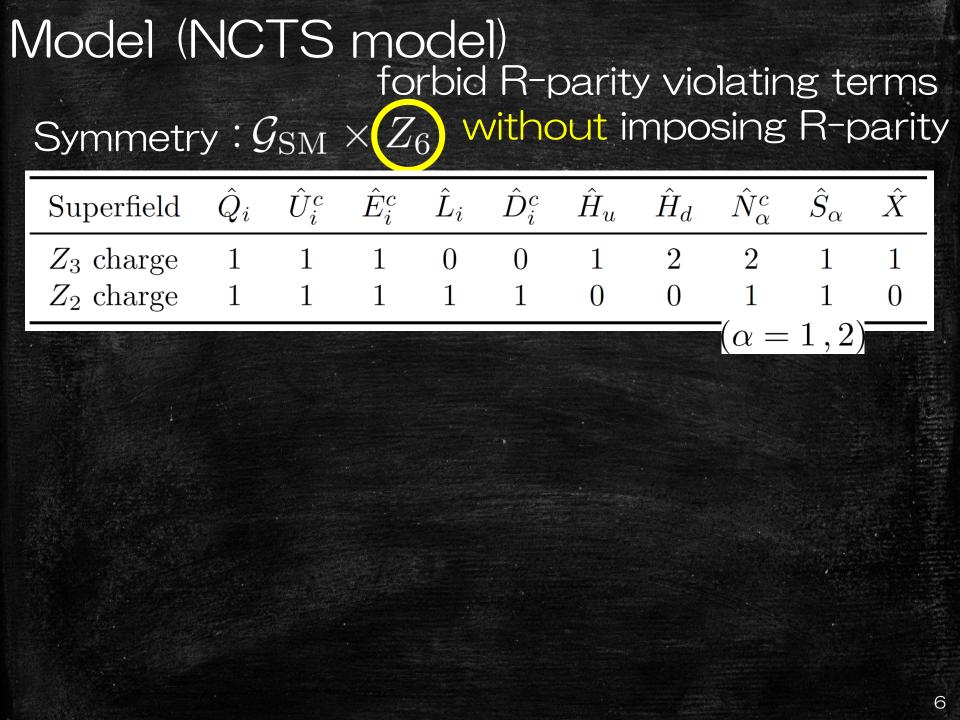
extension at TeV scale with O(1) Yukawa Rich phenomenology at collider!

Dynamical origin of M_S ?

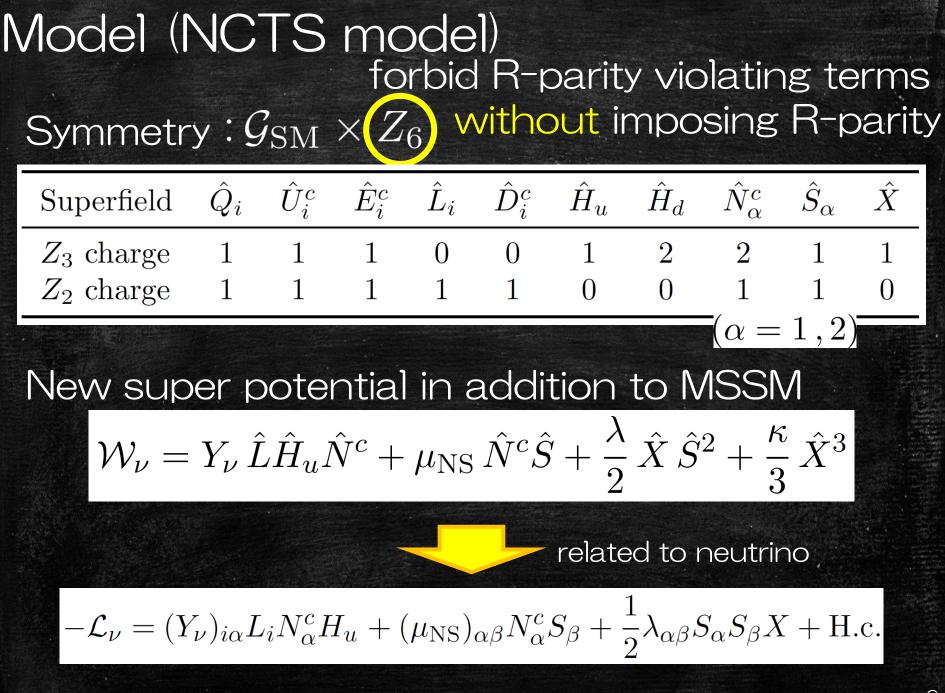
Model (NCTS model)

Symmetry : $\mathcal{G}_{\rm SM} \times Z_6$

Superfield	\hat{Q}_i	\hat{U}_i^c	\hat{E}_i^c	\hat{L}_i	\hat{D}_i^c	\hat{H}_u	\hat{H}_d	\hat{N}_{α}^{c}	\hat{S}_{lpha}	\hat{X}
Z_3 charge	1	1	1	0	0	1	2	2	1	1
Z_2 charge	1	1	1	1	1	0	0	1	1	0
								$(\alpha =$	$\left(1,2 ight)$	



Model (NCTS model) forbid R-parity violating terms without imposing R-parity Symmetry : $\mathcal{G}_{SM} \times Z_6$ \hat{X} $\hat{U}_i^c \quad \hat{E}_i^c \quad \hat{L}_i \quad \hat{D}_i^c \quad \hat{H}_u$ $\hat{H}_d = \hat{N}^c_\alpha = \hat{S}_\alpha$ \hat{Q}_i Superfield $1 \quad 2$ Z_3 charge 1 1 1 0 20 1 Z_2 charge 1 1 1 1 1 0 $\mathbf{0}$ 1 1 $\mathbf{0}$ $(\alpha = 1, 2)$ New super potential in addition to MSSM $\mathcal{W}_{\nu} = Y_{\nu} \hat{L} \hat{H}_u \hat{N}^c + \mu_{\rm NS} \hat{N}^c \hat{S} + \frac{\lambda}{2} \hat{X} \hat{S}^2 + \frac{\kappa}{3} \hat{X}^3$



Model

Phenomenological constraints? -LFV 1. Non-SUSY : $Br(\mu \to e + \gamma) \simeq \mathcal{O}(10^{-20})$ 2. SUSY: depends on sparticle mixing $-Ov\beta\beta$ decay 1. Non-SUSY: $m_{\rm eff} \simeq 8 \times 10^{-9} {\rm meV} \left(\frac{\mu_{NS}}{{\rm TeV}} \right)$ 2. SUSY: no contribution due to "R-parity" conservation

Boundary conditions

$$\begin{split} m_0^2 &= \frac{1}{9} m_{\tilde{Q}}^2 = \frac{1}{9} m_{\tilde{D}}^2 = \frac{1}{9} m_{\tilde{U}}^2 = m_{\tilde{L}}^2 = m_{\tilde{E}}^2 = m_{\tilde{N}}^2 = m_{\tilde{S}}^2 = m_{H_u}^2 = m_{H_d}^2 = b_{NS} ,\\ M_{1/2} &= \frac{1}{3} M_3 = M_2 = M_1 ,\\ A_i &= A_0 Y_i, \, A_\lambda = A_0 \lambda, \, A_\kappa = \kappa A_0 , \end{split}$$

Boundary conditions

$$\begin{split} m_0^2 = & \frac{1}{9} m_{\tilde{Q}}^2 = \frac{1}{9} m_{\tilde{D}}^2 = \frac{1}{9} m_{\tilde{U}}^2 = m_{\tilde{L}}^2 = m_{\tilde{E}}^2 = m_{\tilde{N}}^2 = m_{\tilde{S}}^2 = m_{H_u}^2 = m_{H_d}^2 = b_{NS} ,\\ M_{1/2} = & \frac{1}{3} M_3 = M_2 = M_1 ,\\ A_i = A_0 Y_i, \, A_\lambda = A_0 \lambda, \, A_\kappa = \kappa A_0 , \end{split}$$

-Put arbitrary factor to make colored particles heavy enough

Boundary conditions

$$\begin{split} m_0^2 &= \frac{1}{9} m_{\tilde{Q}}^2 = \frac{1}{9} m_{\tilde{D}}^2 = \frac{1}{9} m_{\tilde{U}}^2 = m_{\tilde{L}}^2 = m_{\tilde{E}}^2 = m_{\tilde{N}}^2 = m_{\tilde{S}}^2 = m_{H_u}^2 = m_{H_d}^2 = b_{NS} ,\\ M_{1/2} &= \frac{1}{3} M_3 = M_2 = M_1 ,\\ A_i &= A_0 Y_i, \, A_\lambda = A_0 \lambda, \, A_\kappa = \kappa A_0 , \end{split}$$

-Put arbitrary factor to make colored particles heavy enough

 $-m_0$ and $M_{1/2}$ are fixed at high scale

Boundary conditions

$$\begin{split} m_0^2 &= \frac{1}{9} m_{\tilde{Q}}^2 = \frac{1}{9} m_{\tilde{D}}^2 = \frac{1}{9} m_{\tilde{U}}^2 = m_{\tilde{L}}^2 = m_{\tilde{E}}^2 = m_{\tilde{N}}^2 = m_{\tilde{S}}^2 = m_{H_u}^2 = m_{H_d}^2 = b_{NS} ,\\ M_{1/2} &= \frac{1}{3} M_3 = M_2 = M_1 ,\\ A_i &= A_0 Y_i, \, A_\lambda = A_0 \lambda, \, A_\kappa = \kappa A_0 , \end{split}$$

-Put arbitrary factor to make colored particles heavy enough

 $-m_0$ and $M_{1/2}$ are fixed at high scale

-v_X a and k are fixed at low scale
 not to worry about running effect

Sneutrino mass matrix

$$m_{\tilde{\nu}^R}^2 \approx m_{\tilde{\nu}^I}^2 \approx \begin{pmatrix} m_0^2 + \frac{1}{2}M_Z^2\cos(2\beta) & 0 & 0 \\ 0 & m_0^2 + \mu_{NS}^2 & m_0^2 \\ 0 & m_0^2 & m_0^2 + \mu_{NS}^2 \end{pmatrix}$$

-RG corrections to them is small enough

Sneutrino mass matrix

$$m_{\tilde{\nu}^R}^2 \approx m_{\tilde{\nu}^I}^2 \approx \begin{pmatrix} m_0^2 + \frac{1}{2}M_Z^2\cos(2\beta) & 0 & 0 \\ 0 & m_0^2 + \mu_{NS}^2 & m_0^2 \\ 0 & m_0^2 & m_0^2 + \mu_{NS}^2 \end{pmatrix}$$

-RG corrections to them is small enough

-Physical states

$$\tilde{\nu}_{1,2} \approx \frac{1}{\sqrt{2}} \left(\tilde{N}_1^c \mp \tilde{S}_1 \right) \text{ and } \tilde{\nu}_3 \approx \tilde{L}_1$$

$$m_{\tilde{\nu}_1}^2 \approx \mu_{NS}^2$$

-Mass difference

$$m_{\tilde{\nu}_{1}^{R}}^{2} - m_{\tilde{\nu}_{1}^{I}}^{2} \approx \frac{1}{2} \lambda v_{X} \left(\sqrt{2} A_{0} - 2\sqrt{2} \mu_{NS} + \kappa v_{X} \right)$$

Sneutrino mass matrix

$$m_{\tilde{\nu}^R}^2 \approx m_{\tilde{\nu}^I}^2 \approx \begin{pmatrix} m_0^2 + \frac{1}{2}M_Z^2\cos(2\beta) & 0 & 0 \\ 0 & m_0^2 + \mu_{NS}^2 & m_0^2 \\ 0 & m_0^2 & m_0^2 + \mu_{NS}^2 \end{pmatrix}$$

-RG corrections to them is small enough

-Physical states

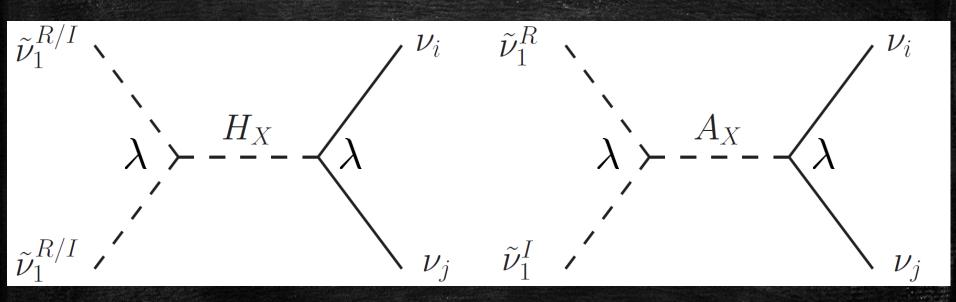
$$\tilde{\nu}_{1,2} \approx \frac{1}{\sqrt{2}} \left(\tilde{N}_1^c \mp \tilde{S}_1 \right) \text{ and } \tilde{\nu}_3 \approx \tilde{L}_1$$

$$m_{\tilde{\nu}_1}^2 \approx \mu_{NS}^2$$

-Mass difference

$$m_{\tilde{\nu}_1^R}^2 - m_{\tilde{\nu}_1^I}^2 \approx \frac{1}{2} \lambda v_X \left(\sqrt{2} A_0 - 2\sqrt{2}\mu_{NS} + \kappa v_X\right)$$

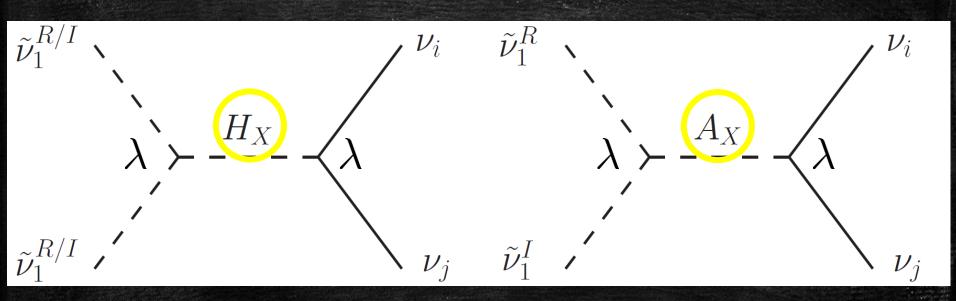
Dominant (co-)annihilation channels



H-funnel

A-funnel

Dominant (co-)annihilation channels



H-funnel

A-funnel

Origin of #L violation mediates between dark and visible sectors!

Features of our analysis

-Three exceptions of thermal relic calculation

- 1. Co-annihilation
- 2. Annihilation into forbidden channel (near threshold)

3. Annihilation near pole (resonance)

Features of our analysis

-Three exceptions of thermal relic calculation

[Griest and Seckel (1991)]

1. Co-annihilation

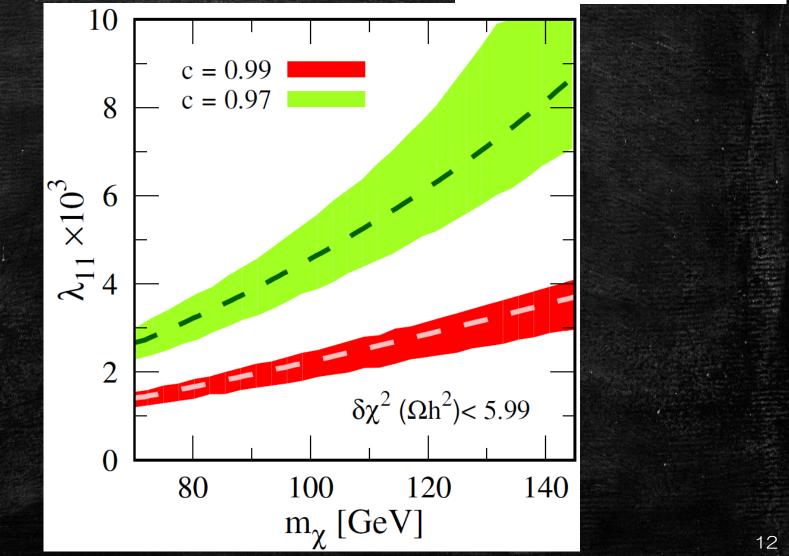
2. Annihilation into forbidden channel (near threshold)

3.)Annihilation near pole (resonance)

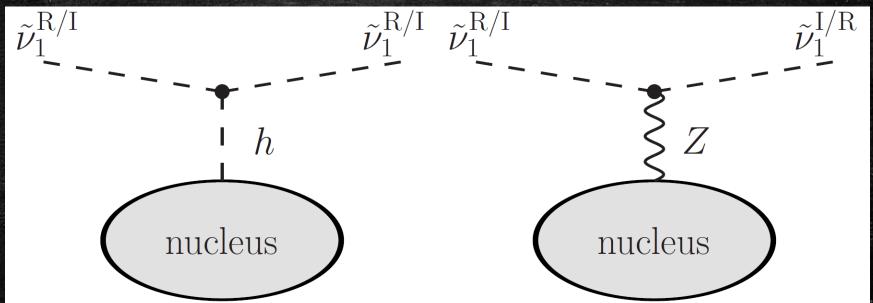
We have to take into account 1 and 3! $m_{\tilde{\nu}_1^R} \simeq m_{\tilde{\nu}_1^I}, \ m_{\tilde{\nu}_1^R} + m_{\tilde{\nu}_1^I} \simeq m_{A_X}$

Results in A_X -funnel scenario

Results in A_X-funnel scenario $m_{\tilde{\nu}_1^R} + m_{\tilde{\nu}_1^I} = c m_{A_X}$

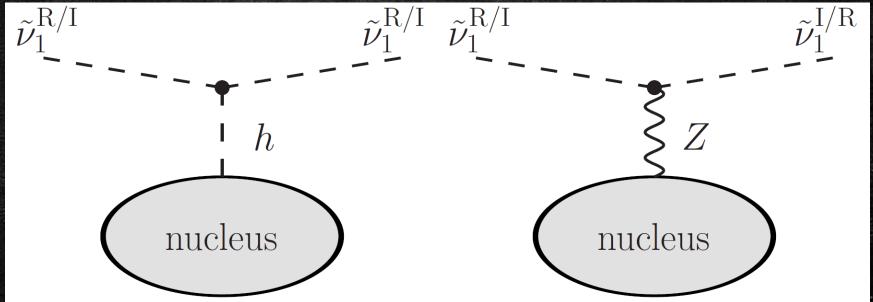


Direct detection

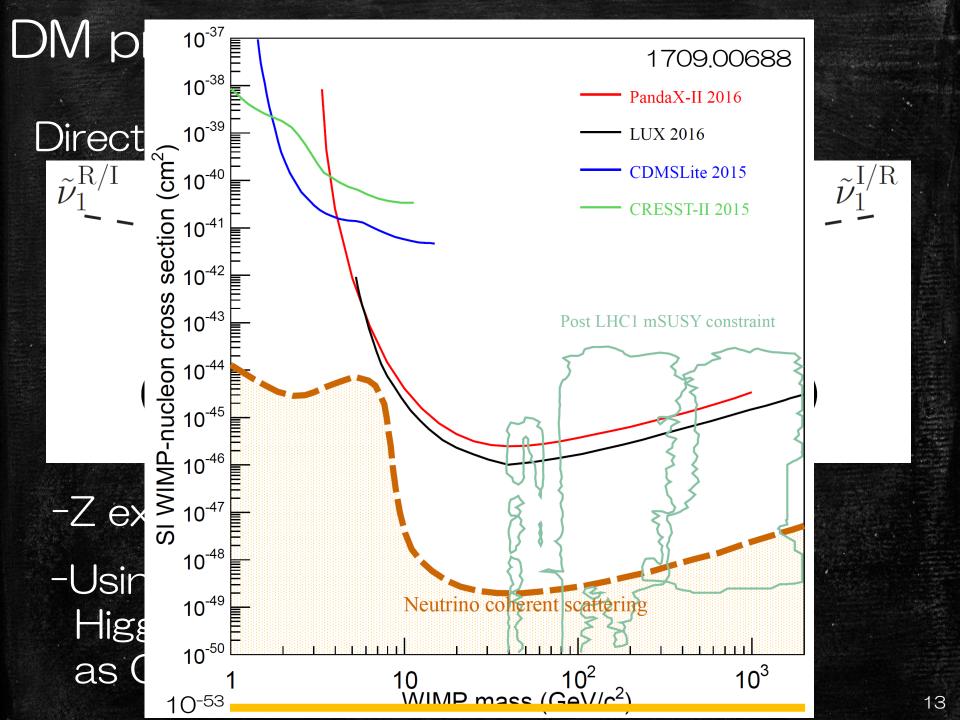


-Z exchange is more suppressed

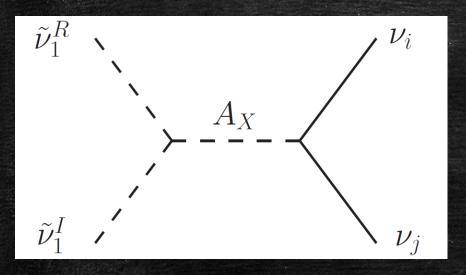
Direct detection



-Z exchange is more suppressed -Using $Y_v \sim 10^{-6}$ and $M_{SUSY}=1$ TeV, Higgs exchange cross section is given as $O(10^{-29})$ pb

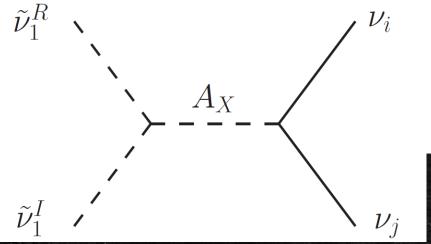


Indirect detection



If DM annihilate into two active neutrinos or one active and one heavy neutrino, we could see line signal of active v at IceCube
Since annihilation cross section into two active neutrinos O(10⁻⁴¹)cm³ s⁻¹, this signal seems not to be so promising

Indirect detection



 $\nu_{K} \xrightarrow{} \ell_{\alpha}$ $W^{+} \xrightarrow{} \bar{\ell}_{\beta}$ ν_{β}

Since heavy v can decay into SM leptons, cascade decay could become important
Cross section decaying into 2 heavy neutrinos is a few order of magnitude smaller, we could see signal in future

Conclusions

SUSY inverse seesaw model

Majorana mass term is dynamically induced
Low scale seesaw mechanism can be realized
Thermal relic sneutrino DM is possible thanks to existing the origin of #L violation
Our extensions to MSSM is really hidden,

Conclusions

SUSY inverse seesaw model

-Majorana mass term is dynamically induced -Low scale seesaw mechanism can be realized -Thermal relic sneutrino DM is possible thanks to existing the origin of #L violation -Our extensions to MSSM is really hidden, in other words, our model can be easily excluded by any other signals of DM!

Thank you for your attention

