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Outline

- Review of discrete gauge anomalies



Anomalies in chiral gauge theories

- Cancellation of gauge anomalies — in a chiral theory such as
the standard model — 1s a fundamental constraint on a
consistent quantum field theory.

- A U(1) chiral gauge theory i1s anomalous if the U(1)
anomaly cancellation condition
Purely gauge : Z q% — Z q% =0
left right U(l) U(l)
Mixed gauge and grav : Z qr, — Z qr =0 U(l)
left right
is not satisfied. Here {q;} and {qr} are U(1)
charges of Weyl fermions. grav grav



QQ: While anomalies of cont. symm are well understood, how about
the case of gauge anomalies associated with discrete symm?

»In this case, there are only global (non-perturbative) anomalies, and
one can not use a “usual method” to calculate them

»In a paper by Krauss and Wilczek (1989), they also mentioned
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mention two caveats. First, there are discrete
symmetries— those associated with global anomahes——
that cannot be cops i — : :

such anomalies
which we shall not ente - S not quite
true that the identifications we env1sage in field space are

a difficult but well developed art!




QQ: While anomalies of cont. symm are well understood, how about
the case of gauge anomalies associated with discrete symm?

- For example, how do we couple Weyl fermions consistently to a
(topological) Z,, gauge theory in 4d?
»In some cases, we might be able to write down such a theory as
/Zﬂi(i¢+in)¢i+@/BAdA+@ BAB
Z_ 27 47

[Kapustin-Seiberg JHEP (2014)]




Previous works

- There have been several attempts to tackle this problem, such as
the works by Ibafiez-Ross, Banks-Dine, Csaki-Murayama, Araki
et al., etc.

- Let’s review some of these works



Ibanez-Ross

Their argument [Ibafiez-Ross PLB (1991)]

U(1) anomaly cancel. cond.
Z, anomaly cancel. cond. = 4

charge constraints on massive states through SSB of U(1)

The result (a necessary cond.):
3
Zq? :pn—l—r§, p,re€Z; pe3liftne 3Z,

n
ZQZ — p,n + ’I“/§, p/,’l“/ cZ.
')

Contribution from Dirac and Majorana masses, respectively



Banks-Dine

Comments on Ibanez-Ross [Banks-Dine PRD (1992)]
- Only the linear constraint should be satisfied

» Can be understood in terms of instantons (at low energy)

- The nonlinear (cubic) constraint might be too restrictive and
might not be required for consistency of the low energy theory

» Not solely from the low energy considerations and would depend
on assumptions about UV embedding theories



Csaki-Murayama

Argument by t Hooft anomaly matching. Two types of discrete
anomalies are involved [Csaki-Murayama NPB (1998)]

- For Type I anomalies, the matching conditions have to be
always satisfied regardliess of the details of the massive bound
state spectrum.

» The Type II anomalies have to be also matched except 1f there
are fractionally charged massive bound states in the theory.



Motivation

- The Type I anomaly (linear constraint) is actually the mixed
anomaly btw Z,, and gravity (i.e. Spin(4) spacetime symm of
fermions)

- The full anomalies of Spin(4)XZ,, should correspond to both
Type I & II anomalies. But could we compute it without
referring to any UV embedding theory with cont. symm?

I.e., could we determine discrete anomalies from first principles’!
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This work

- We study discrete gauge anomalies in (3+1)d chiral fermion
theories from a more modern perspective, based on

1. the concept of symmetry-protected topological (SPT) phases
2. arefined definition of global anomalies by Witten (2016)

- In particular, we give a purely low energy description of
discrete gauge anomalies — as gauge symmetries in many
situations are emergent [Witten NatPhys (2018)]

A cosmic string
associated to a Z,, symm \



This work

- We focus on the simplest case that the discrete internal
symmetries are cyclic groups. I.e, the full symmetry group of

fermions is Spin(4)XZ,,
—

spacetime internal

- Some of the discussions in this work can also be found in recent
papers 1. Garcia-Etxebarria & M. Montero, arXiv:1808.00009
and S. Monnier & G. Moore arXiv:1808.01334



- Consider a set of left-handed Weyl ferm W = {y;} with
Z, symm: 1; — e2misi/ ", s € Zy,

The anomalies of Spin(4)XZ,, are computed as follows:

1. We formulate the above theory on a manifold endowed with both a
spin structure and a Z,, structure

2. Then, we compute the global anomalies of the resulting theory, based
on Dai-Freed Theorem for fermion partition functions
[Dai-Freed JMP (1994), Witten RMP (2016)]



Spin(5) x Z,, bundle Spin(4) x Z,, bundle

- Let M be a 4-manifold endowed with a spinXZ,, structure.

+ Let X'be a 5-manifold w/ boundary 0X = M s.t. the spinXZ,, structure on M

extends over X.

+ Then the Dai-Freed theorem gives a definition of the part. func. of fermions
in the rep. R of Z,, on X:

Zu(X) = | Zu(M)] exp(~2mina(X))

!

“eta-invariant” of the Dirac op on X




- In order to have a purely 4d theory, the part. func. must not
depend on how the theory extends in one dimension higher

X*=XU(—-X')

X/

Zy _ exp(—2ming(X))
Zy  exp(—2minr(X’))

— exp(—2minr(X™))

- Anomaly-free condition: |exp(—2minr(X™)) =1

for any closed X* endowed with a spinXZ,, structure



- Actually, exp(—2ming(X)) is an invertible TQFT part func (a
cobordism invariant) on a (class of) 5d closed manifold with an
associated structure [Witten 15, 16]

X isbordant toY if oW =X LY



- Actually, exp(—2ming(X)) is an invertible TQFT part func (a
cobordism invariant) on a (class of) 5d closed manifold with an
associated structure [Witten 15, 16]

exp(—2ming(X)) = exp(—2minr(Y))

X (w/ a spinxZ, str) is bordant to Y (w/ a spinxZ,, str) if OW =X UY



- Actually, exp(—2ming(X)) is an invertible TQFT part func (a
cobordism invariant) on a (class of) 5d closed manifold with an
associated structure [Witten 15, 16]

Any 5d X (w/ a spinxZ, str) is bordant to X7 U X3 U--- Xo L Xal--- (w/ their spinxZ,, strs)

N

generators



- Actually, exp(—2ming(X)) is an invertible TQFT part func (a
cobordism invariant) on a (class of) 5d closed manifold with an
associated structure [Witten 15, 16]

- By evaluating exp(—2ming (X)) in generators X; and X,, we found
the anomaly of Spin(4)XZ,, can be represented by

ar = (nr(X1) mod Z, nr(X2) mod Z)  CTH, 1808.02881

_<61n(n2+3n+2)28? mod Z, %Zsz modZ)
¢ \ v J

|
mixed anomaly btw

Z.,, and Spin(4)




- Actually, exp(—2ming(X)) is an invertible TQFT part func (a
cobordism invariant) on a (class of) 5d closed manifold with an
associated structure [Witten 15, 16]

- By evaluating exp(—2ming (X)) in generators X; and X,, we found
the anomaly of Spin(4)XZ,, can be represented by

ar = (nr(X1) mod Z, nr(X2) mod Z)  CTH, 1808.02881
1 2
— (6 (712_|_3n—|—2)23;-3 mod Z, —Zsi mod Z>
n , n =

- Therefore, the anomaly cancellation condition should be

(n2 + 3n + 2) s =0 mod 6n,
0

2232-20 mod n.
i



- In the presence of both chiralities, the cancel cond becomes

(n2 + 3n + 2) As3 =0 mod 6n, 2As1 =0 modn

where Asg :=>"; 57 — > psh and Asy; ==Y ;. s, — D g SR
- Let’s see some examples:

n=2: 12As3=0 mod 12, 2As; =0 mod 2
=> any rep of Z, is anomaly free!

n =3 20As3 =0 mod 18, 2As; =0 mod 3
=> a (nontrivial) Z; anomaly-free rep: 9 left-handed ferm with s; =1
n=4: 30As3=0 mod 24, 2As; =0 mod4

=> a (nontrivial) Z, anomaly-free rep: 4 left-handed ferm with s, =1



- The anomaly-free conditions we derived basing on the Dai-
Freed theorem have similar forms as the the Ibafiez-Ross cond

»Only linear terms and cubic terms of the Z,, charges are involved

- However, our result should be a necessary and sufficient cond
for consistently gauging a Z,, symm of a chiral ferm theory,
while the Ibanez-Ross cond is in principle a necessary cond

Dai-Freed + Cobordism theory Ibanez-Ross (Csaki-Murayama)

3
(n2—|—3n—|—2) s =0 mod 6n, Zq?:pn—kr%,

n
2287;:() mod n. ZQi=pln+7“’§-
. (2
1



- The anomaly-free conditions we derived basing on the Dai-
Freed theorem have similar forms as the the Ibafiez-Ross cond

»Only linear terms and cubic terms of the Z,, charges are involved

- However, our result should be a necessary and sufficient cond
for consistently gauging a Z,, symm of a chiral ferm theory,
while the Ibanez-Ross cond is in principle a necessary cond

Dai-Freed + Cobordism theory Ibanez-Ross (Csaki-Murayama)
3
(n2—|—3n—|—2) | s =0 mod 6n, 9 Zq?zanr?“%,
Z =

n
2287;:() mod n. ZQi=pln+7“’§-
. (2
1
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Role of symm extensions in discrete anomalies

- We know that the Ibanez-Ross cond. are subject to the issue of
symm extensions [Banks-Dine 92], which 1s also crucial in our
situation — discrete anomalies can in general change or even
disappear when symm are extended.

- This 1s the essential difference btw the anomaly cancel. cond. of
a cont. symm and the one of a discrete symm:

1
Indep of the normalization of U(1) charggs

Sensitive to symm extensions, e.g. a lift from Z,, to Z;,,




- For example, let’s consider the following symm extension
1—>ZQ%SpiHXZS%SpiHXZ4%1

- Take a set of Z, charges R={1, 1, 2}, which 1s anomalous. When Z, is
extended to Zg w/ R'={2, 2, 4}, the anomaly 1s gone (“trivialized”)

1
aRp = (— (42 +3-442)(1°+1°+2%) =

2
6 mod Z, Z(1+1+2)_0 modZ)

1
2
0

1 2
aR/=(m(82+3-8+2)(23+23+43)= mod Z, g(2+2+4)=0 modz>



- For example, let’s consider the following symm extension
1—>Zg%SpiﬂXZg%SpinXZ4—>l

* This means three left-handed ferm w/ Z, charges {1, 1, 2} cannot
consistently couple to a Z, gauge field, but can couple to a Zg gauge
field (with rescaled Zg charges{2, 2, 4})

- dZ
- On the other hand, the linear anomaly 3, Z % MOC £ (present for a

. . 1 o« . .
single ferm w/ a unit Z, charge) can never be trivialized upon any
symm extension

» A7, symm w/ non-vanishing linear anomaly cannot be gauged!



In summary:

» For any consistent chiral gauge theory w/ a definite full symm group:

full symm group (e.g. Spin(4)XZg) is known
A

[ |

massless + massive (topological)

|

The discrete charges of the massless Weyl ferm must strictly satisfy the
whole anomaly cancel cond



In summary:

» If only the (effective) symm on the massless ferm is known:

only eff symm (e.g. Spin(4)XZ,) is detected
I ‘ \ . .
massless + massive (topological)
| J | J
I 1
The anomaly constrains for the massless ferr§ should only be respected
up to symmetry extensions

In some situations—with the knowledge of “anomalies”—we can predict
the existence of massive particles carrying “fractional” charges
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Conclusion

« We revisit discrete gauge anomalies in chiral fermion theories in 3 + 1

dimensions — from a more modern perspective based on the concept
of SPT phases.

 Focusing on the simplest case that the internal symm are cyclic
groups, a reformulation of the “discrete anomaly cancellation”
conditions, first proposed by Ibanez and Ross in 1991, 1s given.

« The role of symmetry extensions in discrete anomalies is clarified in a

formal fashion, respecting the viewpoint in the previous work by
Banks and Dine.



Thank You!



