

# Results in Higgs Precision Analysis updated 2018

#### Po-Yan Tseng (Kavli IPMU)

#### Collaborators: Kingman Cheung(NTHU, NCTS) Jae Sik Lee(Chonnam National U.)

ArXiv: 1810.02521

NCTS Annual Meeting 2018, 17<sup>th</sup>-20<sup>th</sup> Dec. 2018

125 GeV Higgs is very SM like:



**ATLAS Higgs Public Results** 

#### NCTS Annual meeting 2018,

- 2018 updated of the 125 GeV Higgs results.
- The ttH and bbH couplings are established.



ATLAS 1806.00425



CMS-HIG-16-044

NCTS Annual meeting 2018,

- From prof. Kai-Feng's talk this morning
- At 13 TeV:

ATLAS : 
$$\mu = 1.13^{+0.09}_{-0.08}$$
  
CMS :  $\mu = 1.17^{+0.10}_{-0.10}$ 

 Combine the ATLAS, CMS, and Tevetron signal strength data.

| Energy          |     | ATLAS                  | $\mathbf{CMS}$                  | Combined               |
|-----------------|-----|------------------------|---------------------------------|------------------------|
| 1.96 TeV [Table | VII |                        |                                 | $1.44\pm0.55$          |
| 7+8 TeV 14      | ]   | $1.20^{+0.15}_{-0.14}$ | $0.97\substack{+0.14 \\ -0.13}$ | $1.09^{+0.11}_{-0.10}$ |
| 13 TeV [Table   | I   | $1.09\pm0.08$          | $1.11\substack{+0.09\\-0.08}$   | $1.10\pm0.06$          |
|                 |     |                        |                                 | $1.10 \pm 0.05$        |

K.Cheung, J.S.Lee, P.Y.Tseng: 1810.02521

#### 2-sigma deviation from SM?

NCTS Annual meeting 2018,

#### For each decay and production modes.

|                                   |                                 |                                 | Decay mode                      |                                 |                                 |                                 |                                     |
|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------------|
| Production mode                   | $H\to\gamma\gamma$              | $H \to ZZ^{(*)}$                | $H \to WW^{(*)}$                | $H \to b b$                     | $H \to \tau^+ \tau^-$           | $\mu_{\rm combined}^{\rm prod}$ | $\chi^2_{\rm SM}(\chi^2_{\rm min})$ |
| ggF                               | $1.02\substack{+0.12\\-0.11}$   | $1.09^{+0.11}_{-0.11}$          | $1.29_{-0.16}^{+0.16}$          | $2.51_{-2.01}^{+2.43}$          | $1.06\substack{+0.40 \\ -0.37}$ | $1.11\substack{+0.07 \\ -0.07}$ | 5.42(3.15)                          |
| VBF                               | $1.23\substack{+0.32\\-0.31}$   | $1.51\substack{+0.59 \\ -0.59}$ | $0.54\substack{+0.32 \\ -0.31}$ | -                               | $1.15\substack{+0.36 \\ -0.34}$ | $1.02\substack{+0.18\\-0.18}$   | 7.53(7.51)                          |
| VH/WH                             | $1.42\substack{+0.51\\-0.51}$   | $0.71\substack{+0.65 \\ -0.65}$ | $3.27^{+1.88}_{-1.70}$          | $1.07\substack{+0.23 \\ -0.22}$ | $3.39^{+1.68}_{-1.54}$          | $1.15_{-0.19}^{+0.20}$          | 7.05(6.44)                          |
| ZH                                | -                               | -                               | $1.00^{+1.57}_{-1.00}$          | $1.20\substack{+0.33 \\ -0.31}$ | $1.23^{+1.62}_{-1.35}$          | $1.19^{+0.32}_{-0.30}$          | 0.45(0.02)                          |
| $\mathrm{tt}\mathrm{H}$           | $1.36\substack{+0.38 \\ -0.37}$ | $0.00\substack{+0.53\\-0.00}$   | -                               | $0.91\substack{+0.45 \\ -0.43}$ | -                               | $0.93\substack{+0.24\\-0.24}$   | 5.96(5.86)                          |
| ttH (excl.)                       | $1.39\substack{+0.48 \\ -0.42}$ | -                               | $1.59_{-0.43}^{+0.44}$          | $0.77\substack{+0.36 \\ -0.35}$ | $0.87\substack{+0.73 \\ -0.73}$ | $1.16^{+0.22}_{-0.22}$          | 4.17(3.62)                          |
| $\mu^{ m dec}_{ m combined}$      | $1.10\substack{+0.10 \\ -0.10}$ | $1.05\substack{+0.11\\-0.11}$   | $1.20^{+0.14}_{-0.13}$          | $1.05\substack{+0.19\\-0.19}$   | $1.15_{-0.23}^{+0.24}$          | $1.10^{+0.06}_{-0.06}$          |                                     |
| $\chi^2_{ m SM}(\chi^2_{ m min})$ | 6.83(5.72)                      | 9.13(8.88)                      | 9.48(7.32)                      | 1.56(1.51)                      | 3.58(3.20)                      |                                 | 30.58(27.56                         |

K.Cheung, J.S.Lee, P.Y.Tseng: 1810.02521

#### NCTS Annual meeting 2018,

Non-SM contribution to Higgs decay width:

$$B(H \to \mathcal{D}) = \frac{\Gamma(H \to \mathcal{D})}{\Gamma_{\text{tot}}(H) + \Delta\Gamma_{\text{tot}}}$$



Negative ttH couplings with respect to the VVH coupling is ruled out:



 For the first time, negative and positive bbH couplings is statistically different:



- Negative ttH and bbH couplings with respect to the VVH coupling:
- Because of the precise measurements of Higgsphoton-photon and Higgs-gluon-gluon couplings:

$$S^{\gamma} \simeq -8.35 \, g_{HWW} + 1.76 \, g_{H\bar{t}t}^S + (-0.015 + 0.017 \, i) \, g_{H\bar{b}b}^S$$

$$S^g \simeq 0.688 \, g^S_{H\bar{t}t} + (-0.037 + 0.050 \, i) \, g^S_{H\bar{b}b}$$

 Flip the sign of bbH coupling gives 10% changes of the Higgs-gluon-gluon coupling

NCTS Annual meeting 2018,

#### For each decay and production modes.

|                                   |                                 |                                 | Decay mode                    |                                 |                                 |                                 |                                   |
|-----------------------------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|
| Production mode                   | $H \to \gamma \gamma$           | $H \to ZZ^{(*)}$                | $H \rightarrow WW^{(*)}$      | $H \rightarrow bb$              | $H \to \tau^+ \tau^-$           | $\mu_{\rm combined}^{\rm prod}$ | $\chi^2_{ m SM}(\chi^2_{ m min})$ |
| ggF                               | $1.02\substack{+0.12\\-0.11}$   | $1.09\substack{+0.11 \\ -0.11}$ | $1.29\substack{+0.16\\-0.16}$ | $2.51_{-2.01}^{+2.43}$          | $1.06\substack{+0.40 \\ -0.37}$ | $1.11\substack{+0.07 \\ -0.07}$ | 5.42(3.15)                        |
| VBF                               | $1.23\substack{+0.32\\-0.31}$   | $1.51\substack{+0.59 \\ -0.59}$ | $0.54_{-0.31}^{+0.32}$        | -                               | $1.15\substack{+0.36 \\ -0.34}$ | $1.02^{+0.18}_{-0.18}$          | 7.53(7.51)                        |
| VH/WH                             | $1.42_{-0.51}^{+0.51}$          | $0.71\substack{+0.65 \\ -0.65}$ | $3.27^{+1.88}_{-1.70}$        | $1.07\substack{+0.23 \\ -0.22}$ | $3.39^{+1.68}_{-1.54}$          | $1.15^{+0.20}_{-0.19}$          | 7.05(6.44)                        |
| ZH                                | -                               | -                               | $1.00^{+1.57}_{-1.00}$        | $1.20\substack{+0.33 \\ -0.31}$ | $1.23^{+1.62}_{-1.35}$          | $1.19\substack{+0.32\\-0.30}$   | 0.45(0.02)                        |
| $\mathrm{ttH}$                    | $1.36\substack{+0.38\\-0.37}$   | $0.00\substack{+0.53\\-0.00}$   | -                             | $0.91\substack{+0.45 \\ -0.43}$ | -                               | $0.93\substack{+0.24\\-0.24}$   | 5.96(5.86)                        |
| ttH (excl.)                       | $1.39\substack{+0.48 \\ -0.42}$ | -                               | $1.59_{-0.43}^{+0.44}$        | $0.77\substack{+0.36 \\ -0.35}$ | $0.87\substack{+0.73 \\ -0.73}$ | $1.16^{+0.22}_{-0.22}$          | 4.17(3.62)                        |
| $\mu^{ m dec}_{ m combined}$      | $1.10\substack{+0.10\\-0.10}$   | $1.05\substack{+0.11\\-0.11}$   | $1.20^{+0.14}_{-0.13}$        | $1.05\substack{+0.19\\-0.19}$   | $1.15_{-0.23}^{+0.24}$          | $1.10\substack{+0.06\\-0.06}$   |                                   |
| $\chi^2_{ m SM}(\chi^2_{ m min})$ | 6.83(5.72)                      | 9.13(8.88)                      | 9.48(7.32)                    | 1.56(1.51)                      | 3.58(3.20)                      |                                 | 30.58(27.56                       |

K.Cheung, J.S.Lee, P.Y.Tseng: 1810.02521

NCTS Annual meeting 2018,

#### Custodial symmetry: WWH and ZZH couplings



K.Cheung, J.S.Lee, P.Y.Tseng: 1810.02521

#### NCTS Annual meeting 2018,

Custodial symmetry: WWH and ZZH couplings



K.Cheung, J.S.Lee, P.Y.Tseng: 1810.02521

#### CP violating ttH coupling:



NCTS Annual meeting 2018,

P.Y. Tseng,

p.11

- Predictions for the Z-photon signal strength:
- Strong correlation between H-Z-photon and HVV couplings



 H-Z-photon coupling can be 1.2 times larger implies signal strength can be 1.4 times larger.

Status of SM:



#### Summary

- The combined signal strength 2-sigma deviation from SM.
- Bottom-Yukawa coupling statistic difference between positive and negative signs.
- Negative Top-Yukawa coupling is ruled out.
- Higgs nonstandard decay branching ratio is less than 8.4%.

#### Summary

- We tested Custodial symmetry: WWH is larger than ZZH but still within 1-sigma.
- We predict the Higgs-->Z+photon. In general, it is consistent with SM. In extreme case, branching ratio is enhanced by 40%.

Thank You !

# Back Up

#### **Higgs Production at LHC**

The production mechanism: ggF, VBF, Vh, tth.



K.Cheung, J.S.Lee, P.Y.Tseng: 1302.3794

ALCW2018,

#### For each decay and production modes.

|                                   |                               |                                 | Decay mode                      |                                 |                                 |                                 |                                   |
|-----------------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|
| Production mode                   | $H\to\gamma\gamma$            | $H \to ZZ^{(*)}$                | $H \to WW^{(*)}$                | $H \to b b$                     | $H \to \tau^+ \tau^-$           | $\mu_{\rm combined}^{\rm prod}$ | $\chi^2_{ m SM}(\chi^2_{ m min})$ |
| ggF                               | $1.02^{+0.12}_{-0.11}$        | $1.09\substack{+0.11 \\ -0.11}$ | $1.29\substack{+0.16 \\ -0.16}$ | $2.51_{-2.01}^{+2.43}$          | $1.06\substack{+0.40\\-0.37}$   | $1.11\substack{+0.07\\-0.07}$   | 5.42(3.15)                        |
| VBF                               | $1.23\substack{+0.32\\-0.31}$ | $1.51\substack{+0.59 \\ -0.59}$ | $0.54\substack{+0.32 \\ -0.31}$ | -                               | $1.15\substack{+0.36 \\ -0.34}$ | $1.02^{+0.18}_{-0.18}$          | 7.53(7.51)                        |
| VH/WH                             | $1.42_{-0.51}^{+0.51}$        | $0.71\substack{+0.65 \\ -0.65}$ | $3.27^{+1.88}_{-1.70}$          | $1.07\substack{+0.23 \\ -0.22}$ | $3.39^{+1.68}_{-1.54}$          | $1.15^{+0.20}_{-0.19}$          | 7.05(6.44)                        |
| ZH                                | -                             | -                               | $1.00^{+1.57}_{-1.00}$          | $1.20\substack{+0.33 \\ -0.31}$ | $1.23^{+1.62}_{-1.35}$          | $1.19^{+0.32}_{-0.30}$          | 0.45(0.02)                        |
| $\mathrm{tt}\mathrm{H}$           | $1.36\substack{+0.38\\-0.37}$ | $0.00\substack{+0.53 \\ -0.00}$ | -                               | $0.91\substack{+0.45 \\ -0.43}$ | -                               | $0.93^{+0.24}_{-0.24}$          | 5.96(5.86)                        |
| ttH (excl.)                       | $1.39\substack{+0.48\\-0.42}$ | -                               | $1.59\substack{+0.44 \\ -0.43}$ | $0.77\substack{+0.36 \\ -0.35}$ | $0.87\substack{+0.73 \\ -0.73}$ | $1.16^{+0.22}_{-0.22}$          | 4.17(3.62)                        |
| $\mu^{ m dec}_{ m combined}$      | $1.10\substack{+0.10\\-0.10}$ | $1.05\substack{+0.11 \\ -0.11}$ | $1.20\substack{+0.14\\-0.13}$   | $1.05\substack{+0.19 \\ -0.19}$ | $1.15_{-0.23}^{+0.24}$          | $1.10\substack{+0.06\\-0.06}$   |                                   |
| $\chi^2_{ m SM}(\chi^2_{ m min})$ | 6.83(5.72)                    | 9.13(8.88)                      | 9.48(7.32)                      | 1.56(1.51)                      | 3.58(3.20)                      |                                 | 30.58(27.56                       |

#### K.Cheung, J.S.Lee, P.Y.Tseng: 1810.02521

ALCW2018,

 Di-photon channel at 96 GeV has 2-sigma excess from CMS:



CMS PAS HIG-17-013