The States in 2D CFT and Their Holographic Descriptions

Wu-Zhong Guo

National Center for Theoretical Sciences

2018.12.18 At NCTS Annual Theory Meeting 2018

Based on works with Feng-Li Lin and Jiaju Zhang, arXiv:1806.07595, arXiv:1808.02873(Phys. Rev. Lett. in press), arXiv:1810.01258, work in process.

Key Words

Holography, Geometry and Entanglement

♦ Holography (AdS/CFT):

```
Gravity on AdS_{d+1} \iff CFT on the R^d
```

Symmetry match and parameter match, specially for AdS₃/CFT₂, $c = \frac{3R}{2G}$

♦ Geometry:

States in CFT \iff Classical Geometries

in the classical limit $c \to \infty$ or $G \to 0$. But is this true for every states?

♦ Entanglement is an useful concept to understand this question.

• (Some) Entanglement measures are expected to be geometric quantities in context of AdS/CFT.

Geometric state

Definition and Simple Arguments

- ♦ Definition:
- We define geometric state in the context of AdS/CFT, if a state(in CFT) has a classical geometric description, we call this state geometric state.
- ♦ Arguments:
- Since the dual CFT of gravity is a quantum system, for some states, the quantum fluctuation may be very large. While the classical geometry **cannot** product the fluctuation.
- For a quantum system, we may define a state by superposition. But if two states have classical geometry descriptions respectively, what about the superposition of these two states?
- For some systems, one can find some states are more "classical" than others, such as the quantum harmonic oscillator. We know the coherent state can be seen as a classical state in this system, minimal uncertainty relation, follow the classical EoM.

Entanglement/Rényi entropy in CFT

Definitions and Calculations

- Reduced Density Matrix $\rho_A := tr_B \rho$, ρ is the state of the system. In general, ρ_A would be a mixed state even ρ is pure.
- Rényi entropy is defined by

$$S_A^n := \frac{\log tr \rho_A^n}{1-n} \tag{1}$$

- \blacklozenge Entanglement entropy as the limit $S_A := \lim_{n \to 1} S_A^n$.
- Replica methos to obtain $tr \rho_A^n$:

• Correlation functions or partition function on n-sheet Riemann surface Σ_n with singularity at the boundary of A.

• Correlators of n-copy CFT involving twist operator

$$\mathrm{tr}\rho_A \propto \langle \sigma(\ell) \tilde{\sigma}(0) \rangle_{
ho^n}$$
 (2)

Entanglement/Rényi entropy in CFT Twist operator OPE

In general,

$$\sigma(\ell)\tilde{\sigma}(0) = \frac{c_n}{(\ell)^{2h_\sigma}} \sum_{\kappa} d_{\kappa} \sum_{\rho=0}^{\infty} \frac{c_{\kappa}^{\rho}}{\rho!} \ell^{h_{\kappa}+\rho} \partial^{\rho} \Phi_{\kappa}(0),$$
(3)

 $c_{K}^{p} \equiv \frac{C_{h_{K}+p-1}^{p}}{C_{2h_{K}+p-1}^{p}}$ with C_{x}^{y} being the binomial coefficient, summation K is over all the orthogonalized (quasi-)primary operators. d_{K} are the constants that we need to calculate.

- At order $\ell^0 \Phi_K$ is the identity operator. At order ℓ^2 , it is T_j .
- At order ℓ^4 , we have $T_j T_k$, \mathcal{A}_j and $\partial^2 T_j$, with

$$\mathcal{A} := (TT) - \frac{3}{10}\partial^2 T \tag{4}$$

 \bullet Rényi entropy \rightarrow the expectation value of these quasi-primary operators in state ρ

Holographic Entanglement and Rényi Entropy Geometric Quantities

Holographic Entanglement Entropy (RT formula)

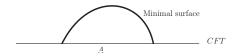
$$S_A = \frac{\text{Area(Minimal surface)}}{4G},$$
(5)

Holographic Rényi Entropy (Xi Dong's proposal)

$$\tilde{S}_n := n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\text{Area}(\text{Cosmic Brane}_n)}{4G}.$$
 (6)

The tension of the brane is a function of the index n as

$$T_n = \frac{n-1}{4nG}.$$
(7)



Geometric State

Argument from holography

♦ The basic idea is to compare some quantities that we both can be calculated if the dual exists. We choose the geometric quantities, such as EE, and Rényi entropy.

 \blacklozenge For AdS3 the general solution of the vacuum Einstein equation is Bañado metric,

$$ds^{2} = \frac{dy^{2}}{y^{2}} + \frac{L_{\rho}}{2}dz^{2} + \frac{\bar{L}_{\rho}}{2}d\bar{z}^{2} + \left(\frac{1}{y^{2}} + \frac{y^{2}}{4}L_{\rho}\bar{L}_{\rho}\right)dzd\bar{z},$$
(8)

with

$$\langle T(z) \rangle_{\rho} = -\frac{c}{12} L_{\rho}(z), \quad \langle \bar{T}(\bar{z}) \rangle_{\rho} = -\frac{c}{12} \bar{L}_{\rho}(\bar{z}).$$
 (9)

♦ Arguments from holography

For a 2D CFT state of order c stress tensor expectation value to be holographic dual to a Bañados geometry, the entanglement/Rényi entropy obtained from CFT calculations should be at most order c in the large c limit. Otherwise, we call the CFT state non-geometric.

Geometric States

The necessary conditions

 \blacklozenge With some calculations, we have (up to $\ell^6)$

$$\begin{split} \langle T(w) \rangle_{\rho} &= c\alpha(w) + \beta(w) + \frac{\gamma(w)}{c} + O\left(\frac{1}{c^2}\right), \\ \langle \mathcal{A}(w) \rangle_{\rho} &= c^2 \alpha(w)^2 + c\delta(w) + \epsilon(w) + O\left(\frac{1}{c}\right), \\ \langle \mathcal{B}(w) \rangle_{\rho} &= c^2 \left[\alpha'(w)^2 - \frac{4}{5}\alpha(w)\alpha''(w)\right] + c\zeta(w) + O(c^0), \\ \langle \mathcal{D}(w) \rangle_{\rho} &= c^3 \alpha(w)^3 + 3c^2 \alpha(w)[\delta(w) - \alpha(w)\beta(w)] + c\eta(w) + O(c^0), \end{split}$$

 \blacklozenge Just by using EE, (up to $\ell^8)$

$$\langle T(w) \rangle_{\rho} = c \alpha(w) + O(c^0),$$

 $\langle \mathcal{A}(w) \rangle_{\rho} = c^2 \alpha(w)^2 + O(c).$ (10)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Geometric State

Example: Thermal state, primary state

• Thermal states satisfy all the conditions we have. Specially, the canonical ensemble state can be checked non-perturbatively.

• The primary state $\phi(0)|0\rangle$, with $h_{\phi} = \epsilon c$.

$$\langle \phi^n(\infty) | \sigma(z) \tilde{\sigma}(1) | \phi^n(0) \rangle \simeq \exp[-\frac{nc}{6} f_0(h_{\phi}/c, 1-z)]$$
 (11)

The gravity dual is expected to be AdS with with a defect (with a static massive particle in pure AdS).

• The "coherent" state on the primary state, $e^{z_0L_{-1}}|\phi\rangle$. The gravity dual can be seen as a moving particle in AdS.

Non-geometric State

Example: The superposition state, (Some) Descendant state

• The superposition state $(h_{\phi_1} \neq h_{\phi_2})$

$$|\Phi\rangle := \cos(\theta) |\phi_1\rangle + e^{i\psi} \sin(\theta) |\phi_2\rangle.$$
 (12)

$$\langle \Phi | \mathcal{A} | \Phi \rangle - \langle \Phi | \mathcal{T} | \Phi \rangle^2 = \frac{16\pi^4 (\epsilon_{\phi_1} - \epsilon_{\phi_2})^2}{L^4} \sin^2(\theta) \cos^2(\theta) c^2 + O(c) \neq 0.$$
(13)

♦ (Some) Descendant states,

$$\begin{aligned} |\phi^{(m)}\rangle & \text{with } h_{\phi} + m \sim O(c), \\ |\tilde{\phi}\rangle & \text{with } h_{\phi} \sim O(c), \\ |\tilde{\phi}^{(m)}\rangle & \text{with } h_{\phi} + m \sim O(c), \\ |T^{(m)}\rangle & \text{with } m \sim O(c), \\ |\mathcal{A}^{(m)}\rangle & \text{with } m \sim O(c), \end{aligned}$$
(14)

with $\tilde{\phi}$ is a quasi-primary operator with the definition $\tilde{\phi}\equiv$ ($T\phi$) $-\frac{3}{2(h_{\phi}+1)}\phi''$

・ロト・西ト・ヨト・ヨー シック

Mixed states

Microcanonical ensemble state

The microcanonical ensemble state is defined by

$$\rho_E := \frac{1}{\Omega(E)} \sum \delta(E_i - E) |E_i\rangle \langle E_i|, \quad \text{with} \quad \Omega(E) = \sum_i \delta(E - E_i). \tag{15}$$

 $E = \frac{2\pi}{L} (\Delta - \frac{c}{12})$. For an operator χ , in high temperature $L \gg \beta$

$$\langle \chi \rangle_{\beta} = \mathcal{Z}^{-1}(\beta) \sum_{i} e^{-\beta E_{i}} \langle E_{i} | \chi | E_{i} \rangle = \mathcal{Z}^{-1}(\beta) \int_{E_{0}}^{+\infty} dE \langle \chi \rangle_{E} e^{-\beta E}, \qquad (16)$$

where $\langle \chi \rangle_{\mathcal{E}} := \sum_i \langle \mathcal{E}_i | \chi | \mathcal{E}_i \rangle \delta(\mathcal{E}_i - \mathcal{E})$. By an inverse Laplace transformation

$$\overline{\langle \chi \rangle}_{E} := \frac{\langle \chi \rangle_{E}}{\Omega(E)}$$
(17)

For examples,

$$\overline{\langle T \rangle}_{E} = -\frac{\pi^{2}c}{6\lambda^{2}}, \quad \overline{\langle A \rangle}_{E} = \frac{\pi^{4}c(5c+22)I_{3}}{180\lambda^{4}I_{1}}, \quad (18)$$

where $\lambda := \sqrt{\frac{\pi cL}{6E}}$, the notation I_{ν} for $I_{\nu}(\frac{\pi cL}{3\lambda})$ ($I_{\nu}(z)$ is the modified Bessel function of the first kind)

Thermal state

canonical ensemble v.s. microcanonical ensemble

• Consider energy density of microcanonical ensemble is $\frac{\pi c}{6\lambda^2}$ (with $\beta = \lambda$) and thermodynamic limit $L \to \infty$

• For small subsystem, $\ell \ll \beta \ll L$

$$S_{A,\beta}^{n} - S_{A,E}^{n} = O(\frac{\beta}{L})$$
(19)

$$S(\rho_{A,\beta}|\rho_{A,E}) = O(\frac{\beta}{L}).$$
⁽²⁰⁾

• For large subsystem, $\ell \sim L$ (Say, $\ell > L - rac{\log(2)\beta}{2\pi}$)

$$S_{A,E}^{n} - S_{A,\beta}^{n} \simeq \frac{\pi c L}{3\beta} - \frac{\pi c (n+1)L}{6n\beta} + I_{n}(1 - e^{-2\pi (L-\ell)/\beta}),$$
 (21)

EE difference(n=1) is quantum c^0 .

Guo-Lin-Zhang, appear soon

Ensemble Average

♦ For microcanonical average, the descendant states dominate,

$$\frac{\Omega_{\rho}(E)}{\Omega(E)} \sim e^{-L\left[\sqrt{\frac{2\pi c\varepsilon}{3}} - \sqrt{\frac{2\pi (c-1)}{3}\varepsilon}\right]} \to 0 \text{ as } L \to \infty.$$
(22)

 \blacklozenge Microcanonical ensemble state satisfies the geometric state constraints, the descendants don't.

- The descendant states we consider are special.
- Ensemble average erases the difference (quantum fluctuations).

Geometric State

Quantum to Classical

♦ Quantum KdV EoM (currents) to Classical KdV EoM (currents)

$$J_2 = T, \quad J_4 = A + \frac{3}{10}T'', ...$$
 (23)

These currents form the mutually commuting KdV charges, $Q_{2k-1} := \int_0^L \frac{dw}{L} J_{2k}$. If choosing Q_2 as Hamiltonian, we have the quantum KdV EoM,

$$\dot{T} = -\frac{5c+22}{30}T''' - 3A' \rightarrow \dot{U} = U''' + 6UU',$$
 (24)

with $\alpha(w) = U(w)/6$. Fluctuation of observables such as $T(f) := \int T(x)f(x)$,

$$\frac{\sqrt{\langle T(f)^2 \rangle_{\rho} - \langle T(f) \rangle_{\rho}^2}}{\langle T(f) \rangle_{\rho}} \sim \frac{1}{\sqrt{c}}$$
(25)

Summary

Entanglement and spacetime

- ullet Non-entanglement state (such as Boundary state) \Longrightarrow trivial spacetime
- \bullet Entanglement of different spacetime region \Longrightarrow spacetime connectivity

Absence of entanglement (Too classical) \implies No proper classical geometry

- Entanglement is large (in the sense of c) (Too quantum) \implies No proper classical geometry description
- \blacklozenge How to describe the non-geometric state in the context of AdS/CFT?