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� Holography (AdS/CFT):

Gravity on AdSd+1 ⇐⇒ CFT on the Rd

Symmetry match and parameter match, specially for AdS3/CFT2, c = 3R
2G

� Geometry:

States in CFT⇐⇒ Classical Geometries

in the classical limit c →∞ or G → 0.
But is this true for every states?

� Entanglement is an useful concept to understand this question.

• (Some ) Entanglement measures are expected to be geometric quantities in

context of AdS/CFT.



Geometric state
Definition and Simple Arguments

� Definition:
• We define geometric state in the context of AdS/CFT, if a state(in CFT) has
a classical geometric description, we call this state geometric state.

� Arguments:
• Since the dual CFT of gravity is a quantum system, for some states, the
quantum fluctuation may be very large. While the classical geometry cannot
product the fluctuation.
• For a quantum system, we may define a state by superposition. But if two
states have classical geometry descriptions respectively, what about the
superposition of these two states?

• For some systems, one can find some states are more “classical” than others,

such as the quantum harmonic oscillator. We know the coherent state can be

seen as a classical state in this system, minimal uncertainty relation, follow the

classical EoM.



Entanglement/Rényi entropy in CFT
Definitions and Calculations

� Reduced Density Matrix ρA := trBρ, ρ is the state of the system.
In general, ρA would be a mixed state even ρ is pure.

� Rényi entropy is defined by

Sn
A :=

log trρnA
1− n

(1)

� Entanglement entropy as the limit SA := limn→1 Sn
A.

� Replica methos to obtain trρnA :
• Correlation functions or partition function on n-sheet Riemann surface Σn

with singularity at the boundary of A.
• Correlators of n-copy CFT involving twist operator

trρA ∝ 〈σ(`)σ̃(0)〉ρn (2)



Entanglement/Rényi entropy in CFT
Twist operator OPE

In general,

σ(`)σ̃(0) =
cn

(`)2hσ

∑
K

dK

∞∑
p=0

cp
K

p!
`hK+p∂pΦK (0), (3)

cp
K ≡

C
p
hK+p−1

C
p
2hK+p−1

with C y
x being the binomial coefficient, summation K is over all

the orthogonalized (quasi-)primary operators. dK are the constants that we
need to calculate.
• At order `0 ΦK is the identity operator. At order `2, it is Tj .
• At order `4, we have TjTk , Aj and ∂2Tj ,with

A := (TT )− 3

10
∂2T (4)

• Rényi entropy → the expectation value of these quasi-primary operators in

state ρ



Holographic Entanglement and Rényi Entropy
Geometric Quantities

� Holographic Entanglement Entropy (RT formula)

SA =
Area(Minimal surface)

4G
, (5)

� Holographic Rényi Entropy (Xi Dong’s proposal)

S̃n := n2∂n
(n − 1

n
Sn

)
=

Area(Cosmic Branen)

4G
. (6)

The tension of the brane is a function of the index n as

Tn =
n − 1

4nG
. (7)

CFT

AdS

Minimal surface

A



Geometric State
Argument from holography

� The basic idea is to compare some quantities that we both can be calculated
if the dual exists. We choose the geometric quantities, such as EE, and Rényi
entropy.
� For AdS3 the general solution of the vacuum Einstein equation is Bañado
metric,

ds2 =
dy 2

y 2
+

Lρ
2

dz2 +
L̄ρ
2

dz̄2 +
( 1

y 2
+

y 2

4
LρL̄ρ

)
dzdz̄ , (8)

with
〈T (z)〉ρ = − c

12
Lρ(z), 〈T̄ (z̄)〉ρ = − c

12
L̄ρ(z̄). (9)

� Arguments from holography

For a 2D CFT state of order c stress tensor expectation value to be

holographic dual to a Bañados geometry, the entanglement/Rényi entropy

obtained from CFT calculations should be at most order c in the large c limit.

Otherwise, we call the CFT state non-geometric.



Geometric States
The necessary conditions

� With some calculations, we have (up to `6)

〈T (w)〉ρ = cα(w) + β(w) +
γ(w)

c
+ O

( 1

c2

)
,

〈A(w)〉ρ = c2α(w)2 + cδ(w) + ε(w) + O
(1

c

)
,

〈B(w)〉ρ = c2
[
α′(w)2 − 4

5
α(w)α′′(w)

]
+ cζ(w) + O(c0),

〈D(w)〉ρ = c3α(w)3 + 3c2α(w)[δ(w)− α(w)β(w)] + cη(w) + O(c0),

� Just by using EE, (up to `8)

〈T (w)〉ρ = cα(w) + O(c0),

〈A(w)〉ρ = c2α(w)2 + O(c). (10)



Geometric State
Example: Thermal state, primary state

• Thermal states satisfy all the conditions we have. Specially, the canonical
ensemble state can be checked non-perturbatively.
• The primary state φ(0)|0〉, with hφ = εc.

〈φn(∞)|σ(z)σ̃(1)|φn(0)〉 ' exp[−nc

6
f0(hφ/c, 1− z)] (11)

The gravity dual is expected to be AdS with with a defect (with a static
massive particle in pure AdS).

• The “coherent” state on the primary state, ez0L−1 |φ〉. The gravity dual can

be seen as a moving particle in AdS.



Non-geometric State
Example: The superposition state, (Some) Descendant state

� The superposition state (hφ1 6= hφ2)

|Φ〉 := cos(θ)|φ1〉+ eiψ sin(θ)|φ2〉. (12)

〈Φ|A|Φ〉 − 〈Φ|T |Φ〉2 =
16π4(εφ1 − εφ2)2

L4
sin2(θ) cos2(θ)c2 + O(c) 6= 0. (13)

� (Some) Descendant states,

|φ(m)〉 with hφ + m ∼ O(c),

|φ̃〉 with hφ ∼ O(c),

|φ̃(m)〉 with hφ + m ∼ O(c),

|T (m)〉 with m ∼ O(c),

|A(m)〉 with m ∼ O(c), (14)

with φ̃ is a quasi-primary operator with the definition φ̃ ≡ (Tφ)− 3
2(hφ+1)

φ′′



Mixed states
Microcanonical ensemble state

The microcanonical ensemble state is defined by

ρE :=
1

Ω(E)

∑
δ(Ei − E)|Ei 〉〈Ei |, with Ω(E) =

∑
i

δ(E − Ei ). (15)

E = 2π
L

(∆− c
12

). For an operator χ, in high temperature L� β

〈χ〉β = Z−1(β)
∑
i

e−βEi 〈Ei |χ|Ei 〉 = Z−1(β)

∫ +∞

E0

dE〈χ〉Ee−βE , (16)

where 〈χ〉E :=
∑

i 〈Ei |χ|Ei 〉δ(Ei − E). By an inverse Laplace transformation

〈χ〉E :=
〈χ〉E
Ω(E)

(17)

For examples,

〈T 〉E = −π
2c

6λ2
, 〈A〉E =

π4c(5c + 22)I3
180λ4I1

, (18)

where λ :=
√

πcL
6E

, the notation Iν for Iν(πcL
3λ

) (Iν(z) is the modified Bessel

function of the first kind)



Thermal state
canonical ensemble v.s. microcanonical ensemble

� Consider energy density of microcanonical ensemble is πc
6λ2 (with β = λ) and

thermodynamic limit L→∞
• For small subsystem, `� β � L

Sn
A,β − Sn

A,E = O(
β

L
) (19)

S(ρA,β |ρA,E ) = O(
β

L
). (20)

• For large subsystem, ` ∼ L (Say, ` > L− log(2)β
2π

)

Sn
A,E − Sn

A,β '
πcL

3β
− πc(n + 1)L

6nβ
+ In(1− e−2π(L−`)/β), (21)

EE difference(n=1) is quantum c0.

Guo-Lin-Zhang, appear soon



Ensemble Average

� For microcanonical average, the descendant states dominate,

Ωp(E)

Ω(E)
∼ e−L

[√
2πcε

3
−
√

2π(c−1)
3

ε
]
→ 0 as L→∞. (22)

� Microcanonical ensemble state satisfies the geometric state constraints, the
descendants don’t.
• The descendant states we consider are special.

• Ensemble average erases the difference (quantum fluctuations).



Geometric State
Quantum to Classical

� Quantum KdV EoM (currents) to Classical KdV EoM (currents)

J2 = T , J4 = A+
3

10
T ′′, ... (23)

These currents form the mutually commuting KdV charges, Q2k−1 :=
∫ L

0
dw
L

J2k .
If choosing Q2 as Hamiltonian, we have the quantum KdV EoM,

Ṫ = −5c + 22

30
T ′′′ − 3A′ → U̇ = U ′′′ + 6UU ′, (24)

with α(w) = U(w)/6.
� Fluctuation of observables such as T (f ) :=

∫
T (x)f (x),√

〈T (f )2〉ρ − 〈T (f )〉2ρ
〈T (f )〉ρ

∼ 1√
c

(25)



Summary

� Entanglement and spacetime

• Non-entanglement state (such as Boundary state) =⇒ trivial spacetime
• Entanglement of different spacetime region =⇒ spacetime connectivity

Absence of entanglement (Too classical) =⇒ No proper classical geometry

• Entanglement is large (in the sense of c) (Too quantum) =⇒ No proper
classical geometry description

� How to describe the non-geometric state in the context of AdS/CFT?


