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4 Holography (AdS/CFT):

Gravity on AdSy+1 <= CFT on the R

Symmetry match and parameter match, specially for AdS3/CFT>, ¢ = %

¢ Geometry:

States in CFT <= Classical Geometries

in the classical limit ¢ — oo or G — 0.
But is this true for every states?

¢ Entanglement is an useful concept to understand this question.
e (Some ) Entanglement measures are expected to be geometric quantities in
context of AdS/CFT.



Geometric state

Definition and Simple Arguments

¢ Definition:
e We define geometric state in the context of AdS/CFT, if a state(in CFT) has
a classical geometric description, we call this state geometric state.

¢ Arguments:

e Since the dual CFT of gravity is a quantum system, for some states, the
quantum fluctuation may be very large. While the classical geometry cannot
product the fluctuation.

e For a quantum system, we may define a state by superposition. But if two
states have classical geometry descriptions respectively, what about the
superposition of these two states?

e For some systems, one can find some states are more “classical” than others,
such as the quantum harmonic oscillator. We know the coherent state can be
seen as a classical state in this system, minimal uncertainty relation, follow the

classical EoM.



Entanglement/Rényi entropy in CFT

Definitions and Calculations

¢ Reduced Density Matrix pa := trgp, p is the state of the system.
In general, pa would be a mixed state even p is pure.

¢ Rényi entropy is defined by

log trp)
Spi=—>~ 1
A 1—n (1)
4 Entanglement entropy as the limit Sa := lim,_,1 Sj.

¢ Replica methos to obtain trp} :

e Correlation functions or partition function on n-sheet Riemann surface X,
with singularity at the boundary of A.

e Correlators of n-copy CFT involving twist operator

trpa o< (o(€)&(0)) pn (2)



Entanglement/Rényi entropy in CFT

Twist operator OPE

In general,

A(0)50) = 5o XK: d Z; %% PP r(0). (3)

CP
P = _hkteml with ¢ being the binomial coefficient, summation K is over all
2hi+p—1
the orthogonalized (quasi-)primary operators. dk are the constants that we
need to calculate.
e At order £° ® is the identity operator. At order £2, it is T;.
o At order £*, we have T; Tk, A; and 9° T;,with

A:=(TT) - %a% (4)

e Rényi entropy — the expectation value of these quasi-primary operators in

state p



Holographic Entanglement and Rényi Entropy

Geometric Quantities

4 Holographic Entanglement Entropy (RT formula)

Sa— Area(MinTéal s.ulrface)7 (5)

4 Holographic Rényi Entropy (Xi Dong's proposal)

& . 2, (n—1 _ Area(Cosmic Brane,)
3, .7nan( . sn)f e . (6)
The tension of the brane is a function of the index n as
n—1
Tn = . 7
4nG (7)

AdS

/\Mmim al surface
CFT

A




Geometric State
Argument from holography

¢ The basic idea is to compare some quantities that we both can be calculated
if the dual exists. We choose the geometric quantities, such as EE, and Rényi

entropy.
¢ For AdSs the general solution of the vacuum Einstein equation is Bafiado
metric, R _ ,
dy L L, ,_ 1 Yy, < _

ds? = Tt Ld + L d7 + (? +% Lpr)dzdz, (8)

with c ~ -
(T(2))p = —5Lp(2), (T(2))p=—75Lo(2) 9)
12 12

4 Arguments from holography

For a 2D CFT state of order c stress tensor expectation value to be
holographic dual to a Bafiados geometry, the entanglement/Rényi entropy
obtained from CFT calculations should be at most order c in the large c limit.

Otherwise, we call the CFT state non-geometric.



Geometric States

The necessary conditions

4 With some calculations, we have (up to £°)

(T = ca(w) + o) + 2 4 o(3),

(Aw)), = Caw)? + ea(w) + c(w) + (L),

(B(w)), = ¢ [a’ (w)? = Za(w)a(w)] + c(w) + O(),

(D(w)), = Ca(w)} + 3ca(w)B(w) — a(w)s(w)] + en(w) + ("),
4 Just by using EE, (up to £8)

(T(w))p = ca(w) + O(c”),
(A(w)), = *a(w)* + O(c). (10)



Geometric State

Example: Thermal state, primary state

e Thermal states satisfy all the conditions we have. Specially, the canonical
ensemble state can be checked non-perturbatively.
e The primary state ¢(0)|0), with hy = ec.

(9"(00)lo(2)5(1)["(0)) ~ exp[*%cfo(%/a 1-2)] (11)

The gravity dual is expected to be AdS with with a defect (with a static
massive particle in pure AdS).

e The “coherent” state on the primary state, e®"-1|¢). The gravity dual can

be seen as a moving particle in AdS.



Non-geometric State

Example: The superposition state, (Some) Descendant state

4 The superposition state (hg, 7 hg,)

) = cos(6) 1) + ¢ sin(0)]62). (12)
(BA®) — (®]T]6) = 16”4(6(’2—4’6‘”2 sin?(0) cos(0)c” + O(c) # 0. (13)

4 (Some) Descendant states,

16 with hy + m ~ O(c),

|6) with hy ~ O(c),

|6y with hy + m ~ O(c),

|7 with m ~ O(c),

|A™) with m ~ O(c), (14)

with ¢ is a quasi-primary operator with the definition ¢ = (T¢) — mgé”



Mixed states

Microcanonical ensemble state

The microcanonical ensemble state is defined by

1
@25(5 — E)|EN(E|, with Q(E Zé(E E).
E = (A — 13). For an operator y, in high temperature L >

X)s=Z1(B) ZeiﬁE"<Ei|X|Ei) =2z27p) /;Oo dE (x)ee PF,

(15)

(16)

where (x)e := > ;(Ei|x|Ei)0(Ei — E). By an inverse Laplace transformation

* X)e
For examples,
ﬁ o _ﬂ ﬁ o 7T4C(5C+22)I3
E 6N’ E 180Mh
where X := |/ Z& the notation I, for £,(%%) (/,(z) is the modified Bessel

6E
function of the first kind)

(17

(18)



Thermal state

canonical ensemble v.s. microcanonical ensemble

4 Consider energy density of microcanonical ensemble is
thermodynamic limit L — oo
e For small subsystem, / < 8 < L

&z (with 8= X) and

Shs — SaE = 0(%) (19)
S(onslone) = 0(7). (20)
e For large subsystem, £ ~ L (Say, £ > L — log( )B)

n n wcl  wc(n+ 1)L Com(L—
She— S oy - Tt Lo ey

EE difference(n=1) is quantum c°.

Guo-Lin-Zhang, appear soon



Ensemble Average

¢ For microcanonical average, the descendant states dominate,

sz;((;) me tVEEVES] g i oo (22)

4 Microcanonical ensemble state satisfies the geometric state constraints, the
descendants don't.
e The descendant states we consider are special.

e Ensemble average erases the difference (quantum fluctuations).



Geometric State

Quantum to Classical

¢ Quantum KdV EoM (currents) to Classical KdV EoM (currents)

J2: T, J4:A+ %Tﬁ,.,. (23)

These currents form the mutually commuting KdV charges, Q-1 := fOL dTWJ2k.

If choosing @ as Hamiltonian, we have the quantum KdV EoM,

_5c + 22
30

T= T" —3A" > U=U"+6UU, (24)

with a(w) = U(w)/6.
# Fluctuation of observables such as T(f) := [ T(x)f(x),

(25)



Summary

¢ Entanglement and spacetime

e Non-entanglement state (such as Boundary state) = trivial spacetime
e Entanglement of different spacetime region = spacetime connectivity

Absence of entanglement (Too classical) = No proper classical geometry

e Entanglement is large (in the sense of ¢) (Too quantum) = No proper
classical geometry description

4 How to describe the non-geometric state in the context of AdS/CFT?



