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The LHC has searched for new physics in many places.

So far, there has been no evidence of anything beyond the SM.

Many well-motivated models (SUSY, composite higgs, dark matter, …) 
have not turned up as expected.



Fraction of hep-ph papers on SUSY @ LHC

People are losing interest in “well-motivated models”…
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We need new ideas!

Can we search for new physics in the data without knowing what we’re 
looking for?

Can we find the unexpected?

Can we find a needle in a haystack, without knowing what needles are?

Sounds hopelessly difficult…

Maybe deep learning can help!



Deep learning at LHC

Recently there has been a lot of interest in applications of deep learning to the 
LHC. 

• classification (eg quark/gluon tagging, boosted resonance tagging)

• pile-up removal

• event generation

• triggering

• anomaly detection

• …..

There have been some very impressive successes, especially for classification! 
Beginning to be adopted by the LHC collaborations!
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A benchmark application: 
boosted resonance tagging

QCD boosted jet

g

q

q̄

vs.

How to differentiate between 
these two types of jets??
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Figure 4: Distribution of the HTT V2 candidate mass (top), fRec (center) and DRopt (bottom) for
low pT jets (left) and high pT jets (right) reconstructed using CA15 jets. The percentage in the
legend indicates the fraction of entries shown in the plot with respect to the fiducial selection.
Events correspond to an average number of hµi = 20 pileup interactions and a bunch spacing
of 25 ns.
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Figure 3: Distribution of ungroomed n-subjettiness (top) at low pT (left) and high pT (right).
In addition, the softdrop n-subjettiness (bottom left) and the Qjet volatility (bottom right) are
shown for low pT jets clustered using CA15 jets. All distributions are shown after selecting on
the jet mass. The percentage in the legend indicates the fraction of entries shown in the plot
with respect to the fiducial selection. Events correspond to an average number of hµi = 20
pileup interactions and a bunch spacing of 25 ns.

Applying softdrop grooming before calculating the n-subjettiness clearly improves the discrim-
ination power for lower pT jets, especially for top quarks with a pT around 400 GeV, as shown
in Fig. 3 (bottom left). At the same time, for AK8 jets, the groomed n-subjettiness shows a more
stable performance as a function of the jet pT with respect to ungroomed one.

Finally, the Qjet volatility exhibits lower values for true top quarks, where the decay of a heavy
particle is responsible for the jet mass, than for backgrounds, where the clustering of radia-
tion into the jet dominates. However, after requiring a soft drop mass between 150 and 240
GeV (Fig. 3 bottom right), most of the separation power disappears. The deviation from one in
the efficiency reported in Fig. 3 is dominated by the applied softdrop mass selection.

Some obvious ideas: 

jet mass (mtop vs 0) jet substructure (3 vs 1)

QCD boosted jet

g

q

q̄

vs
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Figure 6: Single variable ROC curves (left) and z-score, defined as 1/#B at a signal efficiency
of 30% (right) calculated per-parton for objects passing the fiducial selection criteria for a high
pT sample. Each point on the ROC curve corresponds to a simple selection window using the
tagging variable. The z-score is determined using a likelihood estimator for the diagonal and a
BDT for the off-diagonal elements.
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Figure 7: ROC curves for calculated per-parton for objects passing the fiducial selection crite-
ria for merged top quarks at low boost (left) and high boost (right). Each point on the curve
corresponds to a set of simple selection windows on the given variables.

top tagging efficiency

QCD jet 
mistag rate

State of the art with cuts on kinematic quantities:

Deep learning can do much better!

“ROC curve”



Plan of the talk

1. Introduction to Deep Learning

Convolutional Neural Networks

2. Jet Images

Example: Top Tagging with CNNs

3. Deep Autoencoders for Anomaly Detection at the LHC



What is deep learning?

Deep learning refers to a powerful new class of neural networks with many 
hidden layers.

x0
i+1 = a(wixi + bi)

“neurons”

“synapses”

“fully connected” or 
“dense” NN



What is deep learning?
The many hidden layers enable the deep NN to learn more abstract concepts 
(such as “car” and “not car”), starting from raw inputs (e.g. images).

Deep NNs automate the process of “feature engineering”.

From
 tow

ardsdatascience.com
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Training the deep neural network
Neural networks need to be “trained” on a set of examples. Goal of training 
is to minimize a “loss function” that quantifies performance of NN.

NN(xi)=prob(cat)

xi “Mean squared error”

“Binary cross entropy”

trainable weights
trainable weights

trainable weights

L =
NX

i=1

(NN(xi;w)� yi)
2

L =
NX

i=1

⇣
yi log(NN(xi;w)) + (1� yi) log(1�NN(xi;w))

⌘

yi = truth value     
 = 0 or 1



Successes of deep learning

Many stunning real-world successes in recent years…

• Image recognition

• Self-driving cars

• Amazon Go

• Speech and text recognition

• Autocomplete/Autocorrect

• Digital assistants (Siri/Alexa/Google Home/…)

• AlphaGo

• Chess

• …



Deep Learning for Images: 
Computer Vision

In 1998, the first modern convolutional neural network (CNN) was invented. 
(LeCun, Bottou, Bengio, Haffner)

Achieved 99% accuracy on database of handwritten digits (MNIST)

“LeNet-5”



Convolutional Layer

“feature map”

Finds features in the image in a 
translation invariant way



In 2012, a much more powerful CNN won the “ImageNet” image classification 
competition by a huge margin. This dramatic breakthrough inaugurated the 
modern revolution in deep learning. (Krizhevsky, Sutskever, Hinton)

Deep Learning for Images: 
Computer Vision

# of parameters 1000 x LeNet (60M). Required training on a GPU.

“AlexNet”



AlexNet achieved a “top-5” error rate of 15% (next best was 25%).

Many improvements since AlexNet breakthrough. 
Current world-best around ~2% (better than humans!)



Automated feature engineering



Jet Images
Cogan et al 1407.5675

Can think of a jet as an image in eta and phi, with

• Pixelation provided by calorimeter towers

• Pixel intensity = pT recorded by each tower

Machine Learning and Jets

• We can represent jets in different ways
• We can utilize different classes of  models

10

Calorimeter

Image	from	B.	Nachman

Jet Images 12

Unrolled	slice	of	detector

Calorimeter	towers	as	pixels
Energy	depositions	as	intensity

Slide	from	B.	Nachman

Should be able to apply “off-the-shelf” CNN technology to 
classify and analyze jets at the LHC! de Oliveira et al 1511.05190

Figure credit: 
B. Nachman



Example: Top Tagging with CNNs
Macaluso & DS 1803.00107

Building on previous “DeepTop” tagger of Kasieczka et al 1701.08784

Other approaches also promising (dense NNs, recursive NNs, recurrent NNs, LSTMs, …)

Figure 2: The average of 100k jet images drawn from the CMS sample (37 ⇥ 37 pixels spanning

�⌘ = �� = 3.2). The grayscale intensity corresponds to the total pT in each pixel. Upper: no

preprocessing besides centering. Lower: with full preprocessing. Left: top jets. Right: QCD jets

top jets. After our preprocessing steps, the 3-prong substructure of the top jets becomes

readily apparent, while the QCD jets remain more dipole-like. (This should be contrasted

with the average images in the DeepTop paper, where the 3-prong substructure of the

top jets is much less apparent.)

5 Other improvements

5.1 Sample size

In the DeepTop paper, the training samples were limited to 150k+150k. Here we explore

the e↵ect on our CNN top tagger of increasing the training sample size. Shown in fig. 3

are the learning curves for the test accuracy vs. training sample size, for our two di↵erent

jet samples. (The training sample size is defined to be the number of top jets in the

training sample; an equal number of QCD jets were used. The test sample size was fixed

at 400k+400k jets.) We have shifted the learning curve for the DeepTop sample by a

13

Tops QCDCMS

Jet sample

13 TeV

pT 2 (800, 900) GeV, |⌘| < 1

Pythia 8 and Delphes

particle-flow

match: �R(t, j) < 0.6

merge: �R(t, q) < 0.6

1.2M + 1.2M

Image
37⇥ 37

�⌘ = �� = 3.2

Colors (pneutralT , ptrackT , Ntrack, Nmuon)

Table 1: The two jet image samples used in this work.

1 Introduction

2



Figure 1: Architecture of our CNN top tagger.

4 Image preprocessing

In the original DeepTop paper [30], the image preprocessing steps were found to actually

decrease the performance of the tagger. This is surprising since usually preprocessing

improves classifier performance.

The DeepTop preprocessing steps were as follows. First they pixelated the image

according to their detector resolution. Then they shifted such that the maximum pixel

intensity as defined by a 3x3 window was at the origin. Next, they rotated such that

the second maximum was in the 12 o’clock position, and they flipped to ensure that the

third maximum is in the right half plane. Finally, they normalized each image so that

the pixel intensities are between 0 and 1.

Our preprocessing steps di↵er from this in the following ways. First of all, we perform

all preprocessing before pixelating the image. This makes the most sense for the CMS

sample which separates the much-higher-resolution tracks from the calorimeter towers.

But it also appears to have some benefit even for the calo-only jets of the DeepTop

sample. Our first step is to calculate the pT -weighted centroid of the jet and the pT -

weighted principal axis. Then we shift so that the centroid is at the origin and we rotate

so that the major principal axis is vertical. In contrast to DeepTop, we flip along both

the L-R and the U-D axes so that the maximum intensity is in the upper right quadrant.

Finally, after doing all these transformations, we pixelate the image and then normalize

it to unit total intensity (i.e. divide by the total pT ).

To demonstrate the e↵ectiveness of our preprocessing steps, we show in fig. 2 the

average of 100k top and QCD jet images drawn from the high pT CMS jet sample, with

and without preprocessing. Although below we consider color images where the track

pT ’s and neutral pT ’s are considered separately, here we restrict ourselves to grayscale

images where they are added together. We see that even without preprocessing, the

average images are quite di↵erent, with the QCD jets being much more peaked than the

in this work.

12

Example: Top Tagging with CNNs
Macaluso & DS 1803.00107

DeepTop minimal Our final tagger

Training

SGD AdaDelta

⌘ = 0.003 ⌘ = 0.3 with annealing schedule

minibatch size=1000 minibatch size=128

MSE loss cross entropy loss

CNN architecture
8C4-8C4-MP2-8C4-8C4- 128C4-64C4-MP2-64C4-64C4-MP2-

64N-64N-64N 64N-256N-256N

Preprocessing
pixelate!center center!rotate!flip

! normalize ! normalize!pixelate

Sample size 150k+150k 1.2M+1.2M

Color p
calo
T = p

neutral
T + p

track
T (pneutralT , p

track
T , Ntrack, Nmuon)

Table 2: Summary of our final CNN tagger, together with the original DeepTop tagger.

5.2 Color

Inspired by [29], we also added color to our images from the CMS sample. (The DeepTop

sample was calo-only so we could not add color to them.) The four colors we used were

neutral and track pT per pixel, the raw number of tracks per pixel, and the number

of muons per pixel. The last color was not considered in [29], which focused on quark

vs. gluon tagging. Obviously, muons can be considered a crude proxy for b-tagging and

should play a role in any top tagger. (For more comments on b-tagging, see Section 7.)

Interestingly, we found that adding color to the images led to significant overfitting

for smaller training sample sizes. Evidently, while the color adds information to the

images, it also increases the noise, and with too few training examples, the network

learns to fit the noise. This problem went away when the training sample was increased

to 1.2M+1.2M, which is why we choose to place the color improvement last.

6 Final comparison

The full specifications of our final tagger are summarized in table 2 side-by-side with

those of the original DeepTop tagger.

Having gone through all the improvements (loss function, optimizer, CNN architec-
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Figure 8: ROC curves comparing our best top tagger (black), the original DeepTop tagger (red), the

cut-based top-tagger from [36] using variables from HTTV2 and ⌧32 (blue dashed), and a BDT built

out of those same variables (blue solid), for the CMS jet sample.

directly against their “MotherOfTaggers” BDT ROC curve (i.e. without recasting it).

For the CMS jet sample, we include two taggers that are representative of the state-of-

the-art in top-tagging with high-level features: a cut-based top-tagger using variables

from HTTV2 and N-subjettiness, and a BDT built out of those same variables. The BDT

is trained on the same 1.2M+1.2M jets as our final CNN tagger. The BDT improves

the performance of the high-level cut-based tagger by a moderate amount.

For the DeepTop jet sample, the baseline tagger was already comparable to the

BDT, and our improvements to the former raise it above the BDT by a factor of ⇠ 2.

Meanwhile, for the CMS jet sample, it is surprising to see that the baseline tagger is

outperformed by even a simple cut-based tagger at lower tag e�ciencies. This again

highlights the importance of optimizing a tagger for each fiducial jet selection. Thanks

to the factor of 3–10 improvement over the baseline, our final CNN top tagger still shows

substantial gains (a factor of ⇠ 3 in background rejection) compared to the BDT. One
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Supervised vs Unsupervised ML

Top tagging is a prime example of “supervised machine learning” — 
training with labeled datasets. 

Supervised learning is great if you know what you’re looking for. 

But we are interested in searching for the unexpected. 

If data has a small, unknown signal in it, can we train a NN to find it?

We need “unsupervised learning”: training on unlabeled datasets. 



Supervised Learning Unsupervised Learning

Training on labeled data Training on unlabeled data

Need separate training set Train directly on entire input dataset

Used for prediction Used for analysis

Classification, regression Clustering, density estimation, 
dimensionality reduction

Supervised vs Unsupervised ML



Autoencoders
Heimel et al 1808.08979;   Farina, Nakai & DS 1808.08992

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

An autoencoder maps an input into a “latent representation” and then 
attempts to reconstruct the original input.  

The encoding is lossy (“information bottleneck”), so the decoding 
cannot be perfect. 

Latent layer

Some previous approaches:   
Aguilar-Saavedra et al, "A generic anti-QCD jet tagger” 1709.01087  
Collins et al, “CWoLa Hunting” 1805.02664  
Hajer et al “Novelty Detection Meets Collider Physics” 1807.10261

A promising idea for anomaly detection:
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trained on, its performance should be 
worse.
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“one class classification”
“weakly-supervised learning”

Can use reconstruction error 
as an anomaly threshold!



Autoencoder architectureConvolutional Autoencoder
13

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-
US2-1C3

128C3 : 128 filters with

              a 3x3 kernel

MP2 : max pooling with

          a 2x2 reduction factor

32N : a fully-connected layer

         with 32 neurons

Autoencoder architecture :

US2 : up sampling with

          a 2x2 expansion factor

Encoder Latent space Decoder
M. Ke, C. Lin, Q. Huang (2017)

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-US2-1C3



Sample definitions

Same jet specifications as for top 
tagging study.

We took QCD jets as background, 
and considered tops and 400 GeV 
gluinos as signals.

CMS

Jet sample

13 TeV

pT 2 (800, 900) GeV, |⌘| < 1

Pythia 8 and Delphes

particle-flow

match: �R(t, j) < 0.6

merge: �R(t, q) < 0.6

1.2M + 1.2M

Image
37⇥ 37

�⌘ = �� = 3.2

Colors (pneutralT , ptrackT , Ntrack, Nmuon)

Table 1: The two jet image samples used in this work.

1 Introduction

2



Figure 3: Each panel represents the average of 100k jet images. Pixel intensity corresponds to the
total pT in each pixel. Upper row: original sample. Middle row: after reconstruction. Lower row:
pixel-wise squared error. Left column: QCD jets. Middle column: top jets. Right column: g̃ jets.

the more numerous low mass QCD jets at the expense of the rarer high mass QCD jets.

Meanwhile the CNN has learned information that is not as correlated with the mass,

e.g. details about the jet substructure.

In Table 1, we show the signal e�ciency at 90% and 99% background rejection

(which we refer to as E10 and E100 respectively). The values reported in each case are

the average over 5 independent training runs to ameliorate the intrinsic variance (apart

from PCA which is deterministic). We see that rejecting 99% of background will keep

more than 10% of the signals for both of the deep-learning-based autoencoders.

3.2 Choosing the latent dimension

Here we will explore the dependence of the autoencoder on the dimension of the latent

space. This is one of the most important choices to make in the design of an autoencoder

for anomaly detection. If the dimensionality is too low, the autoencoder is not able to

capture all the salient features of the training set. On the other hand, as the encoding

space gets larger, we get closer to the trivial representation. Hence we would like to find

8

QCD tops gluinos

Performance should be worse on “anomalous” events that autoencoder 
was not trained on.

The algorithm works when trained on QCD backgrounds!



Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

The algorithm works when trained on QCD backgrounds!

Can use reconstruction error as an anomaly threshold.



Fully unsupervised learning
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Figure 8: The performance of autoencoders in the unsupervised learning case where the training set
is contaminated with anomalous events. We take top jet samples for anomalous events. The horizontal
axis denotes the ratio of top jet samples in the whole training set with 100k samples. In the left and
right panels, the values of E10 and E100 for top jet signals are shown respectively. The blue, purple and
red curves denote the cases of the simple, 1d and 2d convolutional autoencoders (each dot representing
the average of 5 runs), gray for PCA.

anomalous events. The horizontal axis denotes the fraction of top jets in the entire

training set. In the left and right panels, the values of E10 and E100 for top jet signals

are shown respectively. For dense and CNN autoencoders, each point represents the

average of 5 runs. In every architecture, as the contamination ratio increases up to

0.1, the values of E10 and E100 tend to gradually decrease but the reduction is not

dramatic. This indicates that the contamination does not give a significant impact on

the performance of our autoencoders.

Just to emphasize how powerful this method potentially is, we see that with the

CNN autoencoder, even with 10% signal present in the training sample, the autoencoder

arrives at E100 ⇠ 0.1, so after this cut on reconstruction loss, we would end up with

S/B ⇠ O(1)!

Of course, without some way of estimating the background, this unsupervised method

of searching for new physics would still probably have limited utility. With just a pure

counting experiment (counting the number of events above some reconstruction error

threshold), we would have no way of knowing whether we have found new physics, unless

we knew beforehand what to expect from the SM background. In the next subsection,

we will explore the possibility of combining the autoencoder with a variable like jet mass,

in order to perform a bump hunt, with data-driven background estimates coming from

sidebands.

13

Performance of AE surprisingly robust even up to 10% contamination!

Train on sample of QCD background “contaminated” with a small fraction of signal. 
Representative of actual data.

(Ex = signal efficiency at bg rejection = x)



Discovering new physics with an 
autoencoder

How would one actually discover new physics with an autoencoder?

Need some way of estimating the background.  Want it to be data-driven — 
cannot rely on simulations. 

So simply counting number of events above a threshold in reconstruction error 
is not enough.

Ndata

Nbg??
How do we know if 
we have an excess?



Figure 9: The left figure shows the average mass in bins of increasing reconstruction error, for the
di↵erent autoencoder architectures. We see that the PCA and dense autoencoder losses are highly
correlated with jet mass all the way up to 400 GeV, while the CNN becomes uncorrelated for masses
above ⇠ 300 GeV. The right figure illustrates this with jet mass histograms for the QCD background.
We see that they are stable against increasingly hard cuts on the reconstruction error.

4.2 Correlation with jet mass

In this subsection, we will explore the correlation of the di↵erent autoencoders with jet

mass. We are motivated by how the autoencoder would be applied in the real world to

look for new physics. We are looking for subtle signals in an open-ended way buried

in the QCD background. Given that there is no reliable way to estimate the QCD

background other than data-driven methods, and given that we are not expecting to

achieve extremely high S/B significances, a pure counting experiment seems implausible.

Instead, we will still need another variable to side-band in order to estimate the QCD

background from the data. Since a large class of new physics starts from the decay of a

heavy new resonance, jet mass is an obvious candidate to side band in.

From this point of a view, the ideal autoencoder would be one whose reconstruction

error is minimally correlated with jet mass. We could then cut hard on the reconstruction

error to “clean” out the QCD background, and then look for a bump in the jet mass

distribution, confident that the autoencoder cut did not sculpt an artificial peak into

the jet mass distribution of the QCD background.

Shown in Fig. 9 (left) is the mean jet mass computed in bins of increasing autoencoder

loss, for the QCD background. We see that PCA (gray) and dense (blue) reconstruction

errors are correlated with jet mass all the way up to 400 GeV. So cutting on the PCA

loss is roughly equivalent to cutting on the jet mass. However, for CNNs the correlation

stops for jet masses above ⇠ 250–300 GeV. Equivalently, the jet mass distribution should

be stable against cutting on the CNN loss for cuts above ⇠ 10�6.

This is borne out in Fig. 9 (right). Here we see the jet mass distribution after cuts

14

Only works if the jet mass distribution is stable against cuts on the 
reconstruction error!

Bump hunt with deep autoencoder

One idea: combine the autoencoder with a bump hunt in jet mass.  
Estimate backgrounds using sideband method in jet mass distribution. 



Bump hunt with deep autoencoder

Train directly on data that contains 400 GeV gluinos. 
Use the AE to clean away “boring” QCD jets. 
Enhance the bump hunt (improve S/B) by a lot! 

Figure 10: Jet mass histograms for QCD background and 400 GeV RPV gluinos, normalized to their
LO cross sections, before (left) and after (right) a cut on CNN autoencoder loss that rejects a factor of
1000 of the QCD background.

on CNN loss that reduce the QCD background by a factor of 10 (blue), 100 (orange),

and 1000 (green). The jet mass distribution is remarkably stable as we cut harder on

CNN loss. This makes it the superior autoencoder for doing a bump hunt in jet mass

for jet masses above ⇠ 300 GeV.

To illustrate the possibilities of searching for new physics in this way, by first “clean-

ing” the QCD background using the CNN autoencoder and then doing a bump hunt in

jet mass, we include Fig. 10. These are the jet mass histograms for QCD background

and 400 GeV gluinos, now normalized to the LO gluino and QCD cross sections, before

(left) and after (right) a cut on CNN autoencoder loss that removes a factor of 1000 of

the QCD background. Importantly, we have trained to autoencoder on a mixed sample

containing the expected fraction of gluino jets, corresponding to a contamination frac-

tion of 10�3. This would be representative of the actual data, if it really contained these

gluinos. We see that the S/B achievable here is ⇡ 25%. As can be seen clearly from

the histograms, this is an impressive improvement on the S/B before the cut (i.e. just

from the raw jet mass histogram), which is only ⇡ 4%. One could plausibly discover

new physics this way!

5 Discussion

In this paper, we have shown how autoencoders – machine-learning algorithms that learn

how to compress and decompress a sample of inputs – are potentially powerful new tools

for performing open-ended searches for new physics at the LHC. While autoencoders

have many real-world applications to anomaly detection, they have up till now not been

15

Before AE cut After AE cut

Could really discover new physics this way!



Conclusions

Deep learning has revolutionized the field of artificial intelligence and has given 
birth to a number of stunning real-world applications.

The revolution is coming to high-energy physics.

In this talk, we gave an overview of deep learning and computer vision.  We 
described two applications to HEP:

• Top tagging with CNNs (supervised learning)

• Deep autoencoders for anomaly detection (unsupervised learning)

Don’t expect unsupervised learning to give better performance than supervised 
learning — things are always better when you know what you’re looking for.

But unsupervised learning gives us the hope of discovering something new and 
unexpected!  We need more ideas like this!



Backup material
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CNN Top Tagger Details
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Figure 6: Ratio of the ROC curves in figs. 4–5 over the minimal DeepTop tagger ROC curve, providing

another view of the cumulative improvements.

DeepTop jets CMS jets

Improvement Accuracy AUC Accuracy AUC

Baseline 85.5% 0.930 91.7% 0.975

Training 86.1% 0.935 93.4% 0.983

Architecture 86.6% 0.939 94.0% 0.985

Preprocessing 86.7% 0.940 94.2% 0.986

Sample Size 87.0% 0.943 94.5% 0.988

Color — — 94.8% 0.989

Table 3: Accuracy and area under the curve (AUC) of our tagger after adding the modifications over

DeepTop minimal.

• Adding color (only possible for the CMS jet sample that di↵erentiates tracks from

neutrals) resulted in a very modest improvement in the tagger performance, shown

in the black curve in figs. 5-6.

We see that with these modifications we can achieve a factor of ⇠ 3–10 improvement

18



CNN Top Tagger Details

DeepTop minimal Our final tagger

Training

SGD AdaDelta

⌘ = 0.003 ⌘ = 0.3 with annealing schedule

minibatch size=1000 minibatch size=128

MSE loss cross entropy loss

CNN architecture
8C4-8C4-MP2-8C4-8C4- 128C4-64C4-MP2-64C4-64C4-MP2-

64N-64N-64N 64N-256N-256N

Preprocessing
pixelate!center center!rotate!flip

! normalize ! normalize!pixelate

Sample size 150k+150k 1.2M+1.2M

Color p
calo
T = p

neutral
T + p

track
T (pneutralT , p

track
T , Ntrack, Nmuon)

Table 2: Summary of our final CNN tagger, together with the original DeepTop tagger.

5.2 Color

Inspired by [29], we also added color to our images from the CMS sample. (The DeepTop

sample was calo-only so we could not add color to them.) The four colors we used were

neutral and track pT per pixel, the raw number of tracks per pixel, and the number

of muons per pixel. The last color was not considered in [29], which focused on quark

vs. gluon tagging. Obviously, muons can be considered a crude proxy for b-tagging and

should play a role in any top tagger. (For more comments on b-tagging, see Section 7.)

Interestingly, we found that adding color to the images led to significant overfitting

for smaller training sample sizes. Evidently, while the color adds information to the

images, it also increases the noise, and with too few training examples, the network

learns to fit the noise. This problem went away when the training sample was increased

to 1.2M+1.2M, which is why we choose to place the color improvement last.

6 Final comparison

The full specifications of our final tagger are summarized in table 2 side-by-side with

those of the original DeepTop tagger.

Having gone through all the improvements (loss function, optimizer, CNN architec-
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Figure 4: ROC curves of tagging e�ciency ✏S vs background rejection 1/✏B computed on test samples
consisting of top jets (left) and gluino jets (right).

an optimal compromise.

In choosing the latent dimension of the autoencoder, it is important to keep in mind

the unsupervised nature of our endeavor. So optimizing the latent dimension using

various signals is not the approach we want to take.

One unsupervised method for finding an optimal working point is to use PCA as the

initial step. Shown in Fig. 5 (left) is the amount of variance in the data explained by each

eigenvector of PCA, in descending order. (This kind of plot is conventionally referred

to as a “scree plot” by PCA practitioners who also happen to be mountaineers.) An

obvious and common prescription is to choose the number of principal components close

to the “elbow” of the scree plot; other choices might be motivated upon more detailed

inspection of the cumulative accounted variance (e.g. one might choose the number of

encoding dimensions corresponding to 95% or 99% of the total variance). We could then

use the same value for the dimensionality of the encoding space in our deep networks.

We can also search for a similar behaviour in the loss function. This is shown in Fig. 5

t g̃

PCA 0.51 / 0.04 0.98 / 0.36

Dense 0.66 / 0.13 0.90 / 0.39

CNN 0.70 / 0.19 0.77 / 0.23

Table 1: E10 and E100 values for various signals. Results for dense and CNN are obtained as the
average of 5 runs of training on the 100k sample (the variances are at the ⇠ 0.01 level).
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Jets as images
Jets as Images 11

• A jet induces a distribution of  energy over 2 − 4
– Essentially how energy from a jet is seen by calorimeters

• Jet-image – fixed size 2D representation of  the jet 
as a distribution of  energy
– Can make use of  the full power of  Computer Vision!

Jet

Jet	Image
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Figure 5: Left: Scree plot for PCA. Contribution to the variance of each principal component in
descending order. Right: average loss as a function of encoding space dimensions. Each dot corresponds
to the average of 5 independent training runs on the 100k training sample (apart from PCA, which is
deterministic and has no variance).

Figure 6: Dependence of performance of autoencoders in the weakly-supervised learning on number
of dimensions of latent space. The values of E10 and E100 for top jet signals are shown respectively in
the left and right panels. Each dot corresponds to the average of 5 independent training runs on the
100k training samples (apart from PCA, which is deterministic and has no variance).

(right) for the di↵erent autoencoders. We see the loss plateaus around the same place

for the various autoencoders, and that corresponds roughly to the elbow of the PCA

scree plot. The loss function first sharply decreases as more important and meaningful

features are learned by the encoded representation. It reaches a plateau supposedly

when only marginal information is added to the encoding space.

Following the above logic we choose k = 6 encoding dimensions for all of the autoen-

coders presented in the paper.

Finally, let’s examine the wisdom of our choice by looking at the top signal for

example. Shown in Fig. 6 is E10 and E100 for the top signal (averaged over 5 training

10

d too large → autoencoder becomes identity transform
d too small → autoencoder cannot learn all the features

Should choose the latent dimension in an unsupervised manner 
(ie without optimizing on a specific signal)
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Can examine PCA eigenvalues or reconstruction loss vs latent 
dimension and look at where they are saturated.
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Project onto the first d PCA eigenvectors z = Pdxin

Inverse transform to reconstruct original input xout = PT
d z = PT
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Autoencoder architectures

We considered three autoencoder architectures (many more are possible):

• Principal Component Analysis (PCA)

• Dense NN

• Convolutional NN

Simple Autoencoder
11

✓ Flatten a jet image into a single column vector.

Autoencoder with a single dense (fully-connected) layer 
as encoder and as decoder.

✓ Encoder and decoder are symmetric.

✓ The number of neurons in a hidden layer = 32.

✓ We use Keras with Tensorflow backend for implementation.

Training details

✦ The default Adam algorithm for optimizer. 

✦ Minibatch size of 1024 

✦ Early stopping : threshold = 0 and patience = 5

The number of images fed into the network at one time

To avoid overtraining

Flatten image into 
column vector

(dimension d)



Autoencoder architectures

We considered three autoencoder architectures (many more are possible):

• Principal Component Analysis (PCA)

• Dense NN

• Convolutional NN

Simple Autoencoder
11

✓ Flatten a jet image into a single column vector.

Autoencoder with a single dense (fully-connected) layer 
as encoder and as decoder.

✓ Encoder and decoder are symmetric.

✓ The number of neurons in a hidden layer = 32.

✓ We use Keras with Tensorflow backend for implementation.

Training details

✦ The default Adam algorithm for optimizer. 

✦ Minibatch size of 1024 

✦ Early stopping : threshold = 0 and patience = 5

The number of images fed into the network at one time

To avoid overtraining

Flatten image into 
column vector

Single hidden 
layer with d=32

(dimension d)
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Comparison vs jet mass
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Figure 4: ROC curves of tagging e�ciency ✏S vs background rejection 1/✏B computed on test samples
consisting of top jets (left) and gluino jets (right).

an optimal compromise.

In choosing the latent dimension of the autoencoder, it is important to keep in mind

the unsupervised nature of our endeavor. So optimizing the latent dimension using

various signals is not the approach we want to take.

One unsupervised method for finding an optimal working point is to use PCA as the

initial step. Shown in Fig. 5 (left) is the amount of variance in the data explained by each

eigenvector of PCA, in descending order. (This kind of plot is conventionally referred

to as a “scree plot” by PCA practitioners who also happen to be mountaineers.) An

obvious and common prescription is to choose the number of principal components close

to the “elbow” of the scree plot; other choices might be motivated upon more detailed

inspection of the cumulative accounted variance (e.g. one might choose the number of

encoding dimensions corresponding to 95% or 99% of the total variance). We could then

use the same value for the dimensionality of the encoding space in our deep networks.

We can also search for a similar behaviour in the loss function. This is shown in Fig. 5

t g̃

PCA 0.51 / 0.04 0.98 / 0.36

Dense 0.66 / 0.13 0.90 / 0.39

CNN 0.70 / 0.19 0.77 / 0.23

Table 1: E10 and E100 values for various signals. Results for dense and CNN are obtained as the
average of 5 runs of training on the 100k sample (the variances are at the ⇠ 0.01 level).

9

Tops 400 GeV gluinos

How do our fancy autoencoders compare against a simpler anomaly detection 
method: jet mass bump hunt?
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In choosing the latent dimension of the autoencoder, it is important to keep in mind

the unsupervised nature of our endeavor. So optimizing the latent dimension using

various signals is not the approach we want to take.

One unsupervised method for finding an optimal working point is to use PCA as the

initial step. Shown in Fig. 5 (left) is the amount of variance in the data explained by each

eigenvector of PCA, in descending order. (This kind of plot is conventionally referred

to as a “scree plot” by PCA practitioners who also happen to be mountaineers.) An

obvious and common prescription is to choose the number of principal components close

to the “elbow” of the scree plot; other choices might be motivated upon more detailed

inspection of the cumulative accounted variance (e.g. one might choose the number of

encoding dimensions corresponding to 95% or 99% of the total variance). We could then

use the same value for the dimensionality of the encoding space in our deep networks.

We can also search for a similar behaviour in the loss function. This is shown in Fig. 5

t g̃

PCA 0.51 / 0.04 0.98 / 0.36

Dense 0.66 / 0.13 0.90 / 0.39

CNN 0.70 / 0.19 0.77 / 0.23

Table 1: E10 and E100 values for various signals. Results for dense and CNN are obtained as the
average of 5 runs of training on the 100k sample (the variances are at the ⇠ 0.01 level).
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Tops 400 GeV gluinos

CNN best performance for tops

How do our fancy autoencoders compare against a simpler anomaly detection 
method: jet mass bump hunt?
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the unsupervised nature of our endeavor. So optimizing the latent dimension using
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encoding dimensions corresponding to 95% or 99% of the total variance). We could then
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We can also search for a similar behaviour in the loss function. This is shown in Fig. 5
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PCA 0.51 / 0.04 0.98 / 0.36

Dense 0.66 / 0.13 0.90 / 0.39

CNN 0.70 / 0.19 0.77 / 0.23

Table 1: E10 and E100 values for various signals. Results for dense and CNN are obtained as the
average of 5 runs of training on the 100k sample (the variances are at the ⇠ 0.01 level).
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Tops 400 GeV gluinos

CNN best performance for tops CNN worst performance for gluinos??

Shape suggests Dense and PCA are 
highly correlated with jet mass

How do our fancy autoencoders compare against a simpler anomaly detection 
method: jet mass bump hunt?



Correlation with jet mass
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Figure 9: The left figure shows the average mass in bins of increasing reconstruction error, for the
di↵erent autoencoder architectures. We see that the PCA and dense autoencoder losses are highly
correlated with jet mass all the way up to 400 GeV, while the CNN becomes uncorrelated for masses
above ⇠ 300 GeV. The right figure illustrates this with jet mass histograms for the QCD background.
We see that they are stable against increasingly hard cuts on the reconstruction error.

4.2 Correlation with jet mass

In this subsection, we will explore the correlation of the di↵erent autoencoders with jet

mass. We are motivated by how the autoencoder would be applied in the real world to

look for new physics. We are looking for subtle signals in an open-ended way buried

in the QCD background. Given that there is no reliable way to estimate the QCD

background other than data-driven methods, and given that we are not expecting to

achieve extremely high S/B significances, a pure counting experiment seems implausible.

Instead, we will still need another variable to side-band in order to estimate the QCD

background from the data. Since a large class of new physics starts from the decay of a

heavy new resonance, jet mass is an obvious candidate to side band in.

From this point of a view, the ideal autoencoder would be one whose reconstruction

error is minimally correlated with jet mass. We could then cut hard on the reconstruction

error to “clean” out the QCD background, and then look for a bump in the jet mass

distribution, confident that the autoencoder cut did not sculpt an artificial peak into

the jet mass distribution of the QCD background.

Shown in Fig. 9 (left) is the mean jet mass computed in bins of increasing autoencoder

loss, for the QCD background. We see that PCA (gray) and dense (blue) reconstruction

errors are correlated with jet mass all the way up to 400 GeV. So cutting on the PCA

loss is roughly equivalent to cutting on the jet mass. However, for CNNs the correlation

stops for jet masses above ⇠ 250–300 GeV. Equivalently, the jet mass distribution should

be stable against cutting on the CNN loss for cuts above ⇠ 10�6.

This is borne out in Fig. 9 (right). Here we see the jet mass distribution after cuts

14

Indeed, this is confirmed by looking at mean jet mass in bins 
of reconstruction error for the QCD background. 

CNN is no longer correlated with jet mass for m≳250 GeV



Robustness with other Monte Carlo

4 Training directly on data: unsupervised mode

4.1 Contamination study

In the previous section, we have explored how autoencoders can be trained on samples of

background-only jets, and then be used to discover signals such as top quarks and RPV

gluinos. This is a prime example of “one-class classification” and weakly-supervised

learning. It could potentially have direct applications to LHC searches for new physics,

provided the background sample can be validated somehow.

In this section, we will turn to a potentially much more exciting application of au-

toencoders in the form of unsupervised learning. Rather than train on a sample of

background-only jets, we will train on a sample of backgrounds “contaminated” by a

small fraction of signal events. We will see how, somewhat surprisingly, the autoencoder

still succeeds in detecting anomalies in the test set even though they are present in the

training set. Evidently, as long as the autoencoder doesn’t see “too many” anomalies in

the course of its training, its performance will be largely preserved.

Figure 8 shows how the amount of contamination with anomalous events in the

training set a↵ects the performance of autoencoders. Here, we use top jet samples for

Figure 7: Comparison of reconstruction error distributions between Pythia and Herwig generated
test samples, full colored histograms and outlines respectively. Gray is QCD and blue tops. The results
are obtained after training a CNN on the Pythia train dataset.
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