Learning Physics from Machine Learning

3X-90=0 loga(mn)= loga m + loga n y=9 $H_{SO} \rightarrow xH_{2O} \pm x^{3}$ +15)(x-6)=0n(AUBUC)-n(BJC) 0404 CU+8HNO, → 3CU(NO 2N0+42Cr (OH) -+ 2OH + 3H202 -> 2CrO2 +81 R*×R|×= a"; a>0, a ≠1} n= 360% -

Credit: Phonlamai Photos

Spencer Chang (U. Oregon, NTU) NCTS Annual Meeting 12/18/18 in collaboration with T. Cohen, B. Ostdiek

Outline

 Machine learning: Effective, but not understandable

 Data planing to diagnose importance of physics variables

A simple collider application

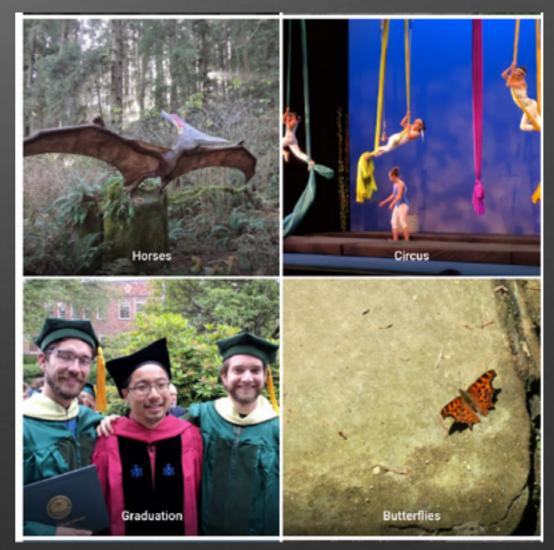
•Future Directions

Machine Learning Breakthroughs

DeepMind

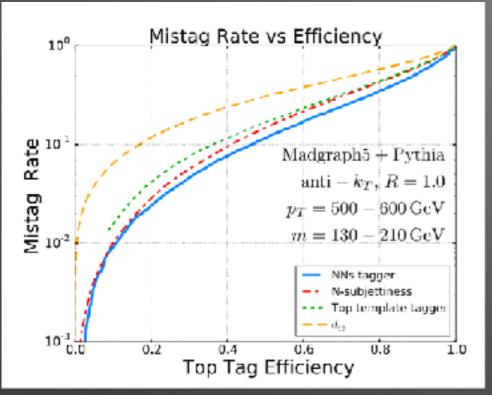
Generating fake photos (NVIDIA)

Image classification (Google Photos)



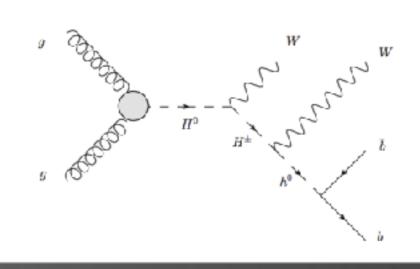
Understanding Machine Learning

Recent Progress in Machine Learning in High Energy Physics



Better Selection Algorithm for energetic top quarks Almeida et.al. 1501.05968

> CaloGAN Fast Detector Simulation Paganini et.al. 1712.10321



Deep Learning for Beyond the Standard Model signals Baldi et.al. 1402.4735

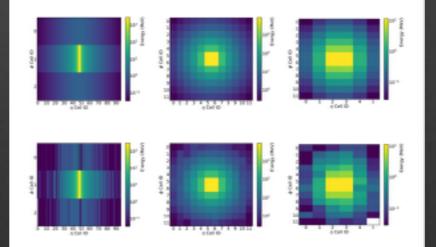
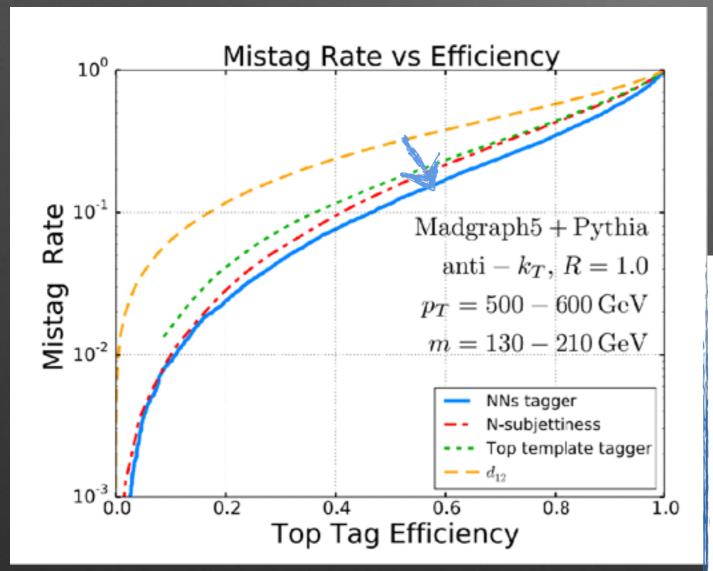


FIG. 6: Average e^+ GEANT4 shower (top), and average e^+ CALOGAN shower (bottom), with progressive calorimeter depth (left to right).

Learning Physics



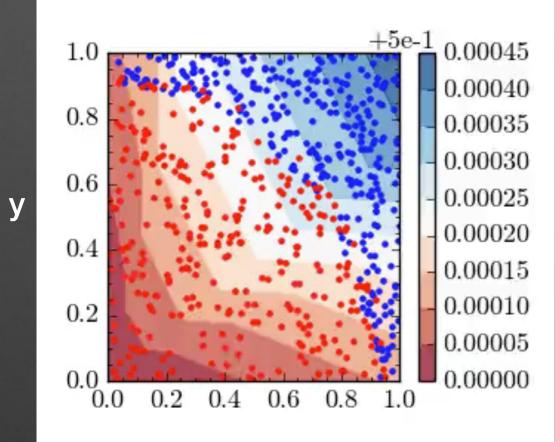
Top quark selection Almeida et.al. 1501.05968

Focus On Classification Clear that machine learning is better at classifying than human experts

But can we learn physics they are utilizing? (e.g. what new variables or correlations are useful?) Important for theorists and experimentalists!

Understanding Classifiers 1709.10106 PRD SC w/ Cohen, Ostdiek

7



x Training data

Deep NN can approximate any function, weights & biases found by training

Neural Networks (NNs) excel at classification (e.g. red vs blue)

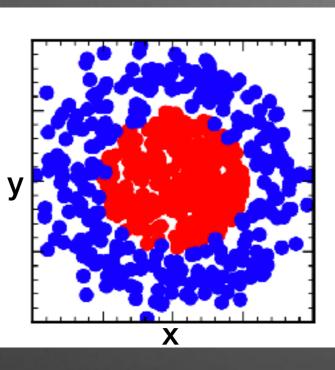
 $act(w_{1x}x + w_{1y}y + b_1)$

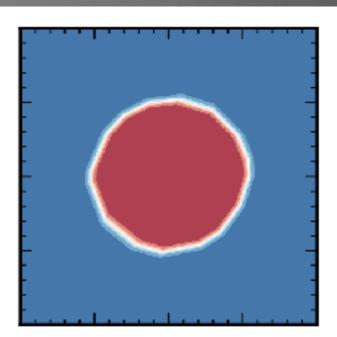
wix
i

wix

Interpreting NN Classifier 1709.10106 PRD SC w/ Cohen, Ostdiek

Training data



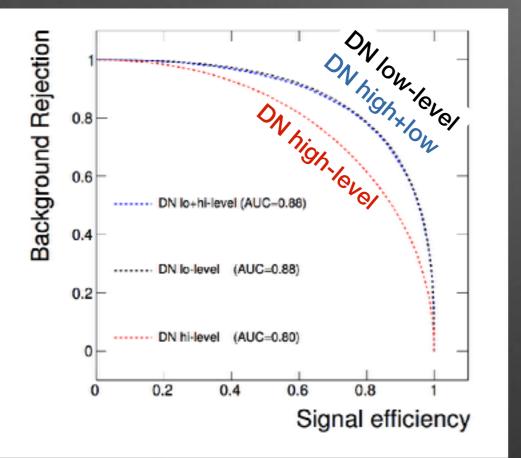


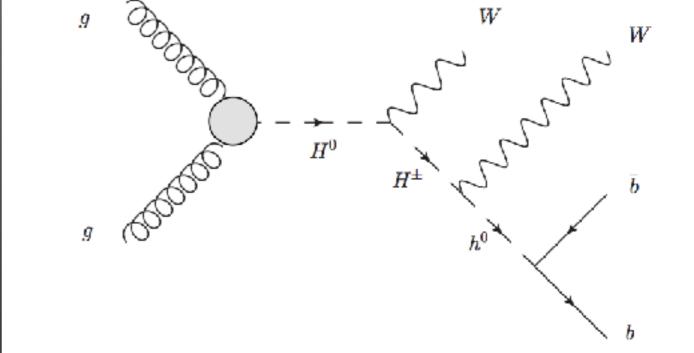
Deep Neural Network Output

In a simple scenario can interpret NN (e.g. approximates radius) As scenario gets complicated in input and feature space this is progressively more challenging

Existing Technique: Saturation

Adding a high level variable as input and seeing if discrimination saturates tests if classifier is sensitive to the variable





Baldi et.al. 1402.4735 High level = invariant masses of cascade decay So deep NN is aware of Lorentz Invariant information without knowing special relativity!

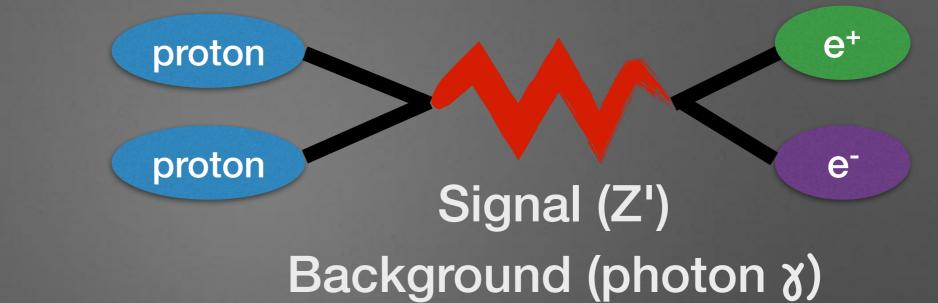
Data Planing

("uniform phase space" suggested in 1511.05190)

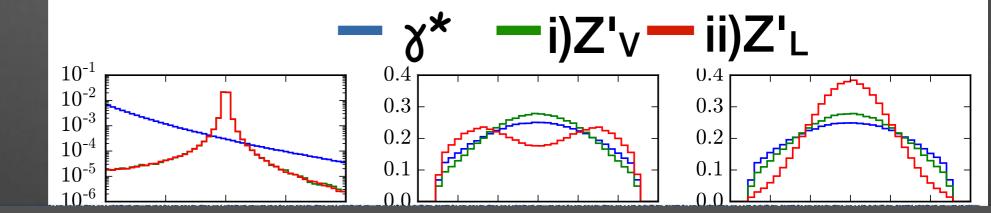
Our proposal is to remove information from events then diagnose importance through degradation of performance

Planing involves reweighting events in a chosen variable to remove info

Collider Example



Raw distributions



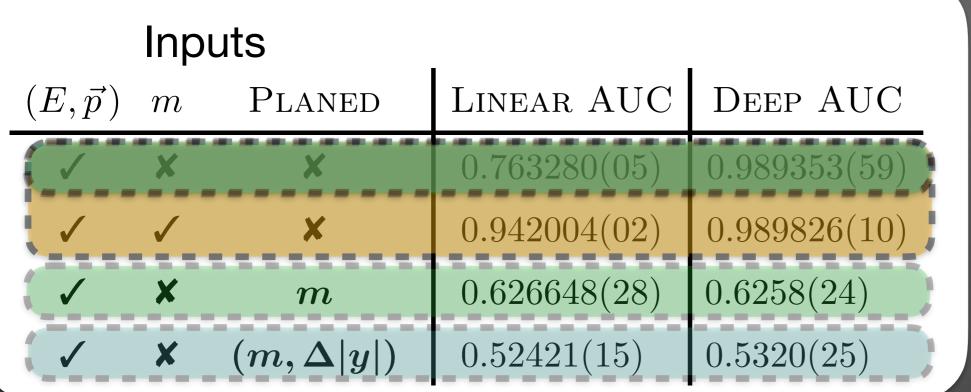
y(e⁻)

y(e⁺)

Discriminants: Invariant mass important to both i, ii Rapidity important for ii

mass

Chiral Z' model



Note: AUC (Area Under Curve) 1 is perfect 0.5 is random guess

Saturation: Deep NN aware of mass

Planing in mass removes most of distinguishing power, leaving linear info?

> Plane in mass and $\Delta|y|$ removes essentially all info

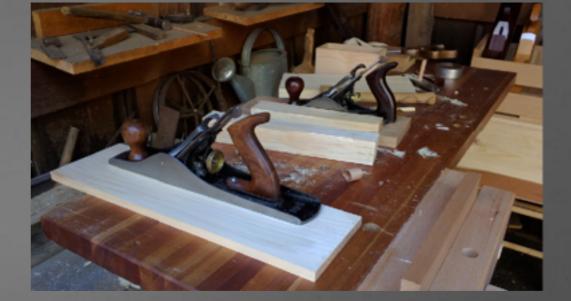
 Large dynamic range diagnostic

 No need to change architecture

Scalable to multiple variables?

 Systematic to explore or needs physics intuition?

Future Directions



- Apply to nontrivial scenarios (e.g. jet substructure, check saturation)
- Can one discover a new useful variable?
- Can one plane in output of a NN to test if discrimination was optimized?

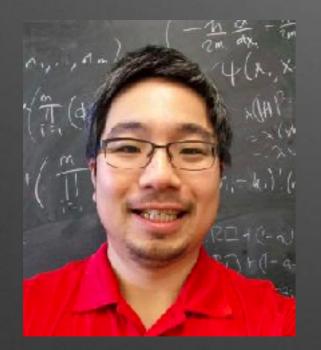
Conclusions

 Planing is a useful diagnostic tool to understand machine learning classifiers

 Weighting to remove info about a variable allows degradation to test its importance

 Machine learning is fascinating and basic questions are still unanswered

Thanks for your attention!



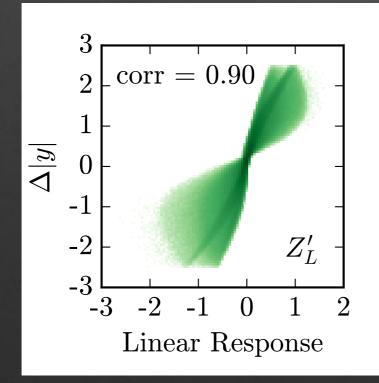
chang2@uoregon.edu

Extra Slides

More on Chiral Z'

Inputs			_	-
(E, \vec{p})	m	Planed	LINEAR AUC	Deep AUC
\checkmark	×	×	0.763280(05)	0.989353(59)
\checkmark	\checkmark	×	0.942004(02)	0.989826(10)
\checkmark	×	m	0.626648(28)	0.6258(24)
\checkmark	×	$(m,\Delta y)$	0.52421(15)	0.5320(25)

Note: AUC (Area Under Curve) 1 is perfect 0.5 is random guess



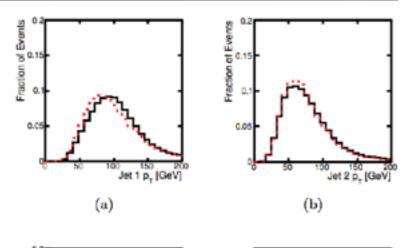
Rapidity difference close to linear

Vector Z' Model

(E, \vec{p})	m	Planed	LINEAR AUC	Deep AUC
\checkmark	×	×	0.746221(01)	0.988510(98)
\checkmark	✓	×	0.938967(01)	0.989007(03)
\checkmark	×	${m}$	0.50550(29)	0.4942(48)

TABLE II: The AUC output for a variety of input configurations applied to the Z'_V model and the photon background.

Baldi et.al.



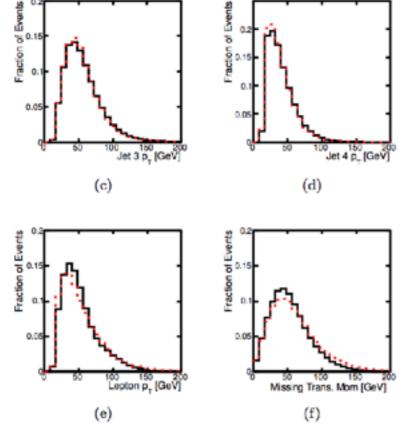
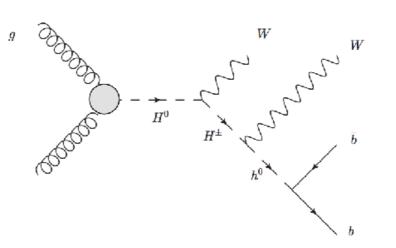
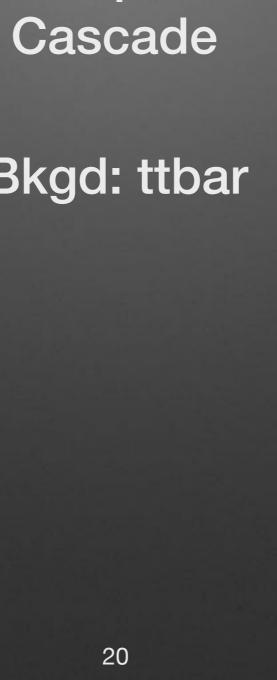


FIG. 2: Low-level input features for Higgs benchmark. Distributions in $\ell \nu j j b \bar{b}$ events for simulated signal (black) and background (red) benchmark events. Shown are the distributions of transverse momenta $(p_{\rm T})$ of each observed particle (a,b,c,d,e) as well as the imbalance of momentum in the final state (f). Momentum angular information for each observed particle is also available to the network, but is not shown, as the one-dimensional projections have little information.



Semileptonic Cascade

Bkgd: ttbar



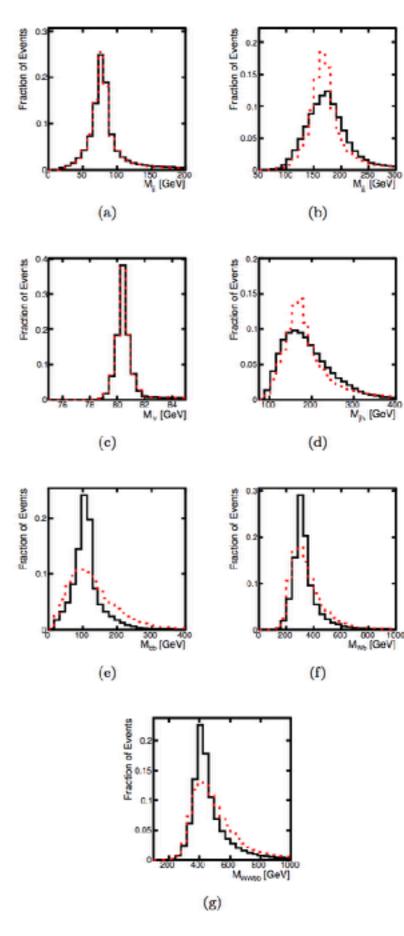


FIG. 3: High-level input features for Higgs benchmark. Distributions in simulation of invariant mass calculations in $\ell \nu j j b \bar{b}$ events for simulated signal (black) and background (red) events.

Other Attempts at Understanding NNs

Almeida et.al. 1501.05968 Top quark selections based on calorimeter images

Explored i) most activating images ii)Correlations

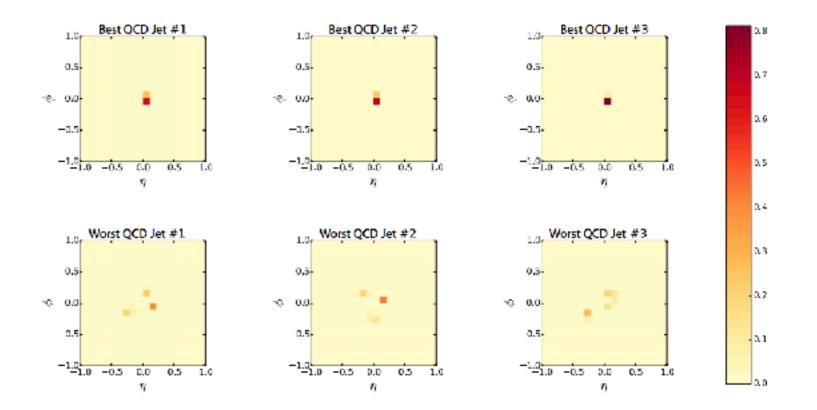


Figure 6. Energy deposit patterns for three jets with the lowest (top row) and highest (bottom row) ANN scores in the QCD jet sample with $p_T \in [800, 900]$ GeV.

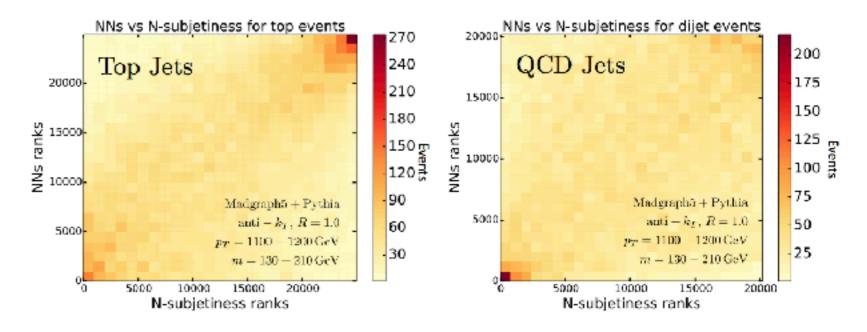
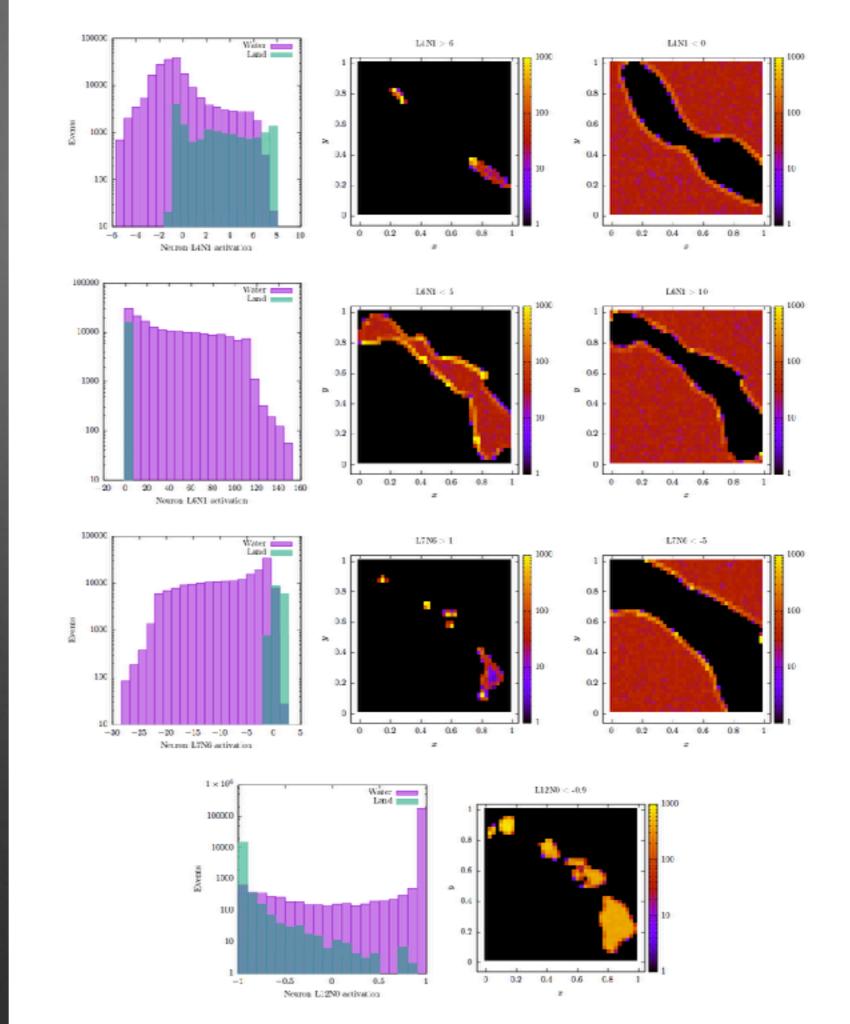


Figure 7. Correlation between the rankings of jets according to *N*-subjettiness (horizontal axis) and ANN score (vertical axis). Left: top sample, $p_T \in [1100, 1200]$ GeV. Right: QCD jet sample, same p_T range. Jets are ranked in order of increasing "topness" for both samples.

Roxlo, Reece 1804.09278

Look at late nodes of NN Maximize Activation to see where decision boundary is



Using saturation to pick the network

