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Outline

•Generalized PDF and HE Scattering in QCD

• Conformal Invariance and O(4,2) symmetry

•OPE and Conformal Block Expansion

•AdS/CFT and Holographic QCD

•Pomeron as Graviton in AdS

•Holographic Treatment of DIS

•TOTEM at LHC: Size and Shape of Proton

•Pion and Odderon

•Pomeron/Odderon Intercept in QCD



1 Outline

• Generalized PDF as HE Scattering:

* Unification of UV and IR physics

* Non-Perturbative Treatment and Conformal Invariance

* O(2, 2) = O(1, 1)⌦O(1, 1) vs O(4, 2) = O(3, 1)⌦O(1, 1):

• OPE and Conformal Block Expansion

• AdS/CFT and Holography QCD:

Pomeron as “Graviton” in AdS

• Holographic Treatment of DIS:

*Anomalous Dimension, DGLAP, etc.

* Confinement, Saturation, etc.

• Odderon, Pion, and TOTEM experiment at LHC

• Pomeron/Odderon intercept and AdS/CFT

3

F2(x, Q2) =
Q2

4⇤2�em
[⌅T (⇥�p) +L (⇥�p)]

Small x :
Q2

s
� 0

Optical Theorem

�total(s, Q2) = (1/s)Im A(s, t = 0;Q2)

Partonic vs Confinement? UV vs IR?



HE scattering since AdS/CFT

�(1) + proton(2) ! �(3) + proton(4) Tµ⌫(p, q; p0, q0) = hp0|T{Jµ(x)J⌫(0)}|pi

At t = 0; Tµ⌫ = W1(x,Q
2)
⇣
gµ⌫ � qµq⌫

q2

⌘
+W2(x,Q

2)
⇣
pµ +

qµ
2x

⌘⇣
p⌫ +

q⌫
2x

⌘
.

DIS : hp|[Jµ(x), J⌫(0)]|pi = F1(x,Q
2)
⇣
gµ⌫ � qµq⌫

q2

⌘
+ F2(x,Q
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⇣
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2x
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p⌫ +

q⌫
2x

⌘

F↵(x, q) = 2⇡ ImW↵(x, q) F2(x, q) = (q2/4⇡2↵em)(�T + �L)

Application of Minkowski d > 1 CFT for Scattering:



HE scattering since AdS/CFT

Lorentz boost and dilatation consist of O(1, 1) ⇥ O(1, 1) subgroup of the full
conformal transformations, O(4, 2).

It has long been known that approximate O(2, 2) symmetry is an important
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HE scattering since AdS/CFT

ḡµ⌫ = ⌘µ⌫ � qµq⌫

q2
p = (p1 + p2)/2

For t 6= 0,

�(q1) + proton(p1) ! �(q2) + proton(p2)

Tµ⌫(p1, p2, q1, q2) = F.T. hp2|T{Jµ(x2)J⌫(x1)}|p1i

Full conformal transformation O(4, 2) ' O(3, 1)⌦O(1, 1):

Off-forward parton distributions 1199

( a )
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 p   | p   | p

( b )

Figure 2. (a) Compton scattering; (b) leading Feynman diagrams for DVCS.

The leading-order Compton amplitude is [21]

T µ⌫ = g
µ⌫
?

Z 1

�1
dx

✓
1

x � ⇠ + i✏
+ 1

x + ⇠ � i✏

◆ X

q

e2qFq(x, ⇠, t, Q2)

+i✏µ⌫↵�p↵n� ⇥
Z 1

�1
dx

✓
1

x � ⇠ + i✏
� 1

x + ⇠ � i✏

◆ X

q

e2qF̃q(x, ⇠, t, Q2)

(61)

where n and p are the conjugate light-cone vectors defined according to the collinear
direction of q̄ and P̄ , and g

µ⌫
? is the metric tensor in the transverse space. ⇠ is related to

the Bjorken variable xB = �q2/(2P · q) by xB = 2⇠/(1+ ⇠).
The same DVCS final state can also be produced through the Bethe–Heitler process in

which the initial- or final-state electron (or muon) radiates a real photon and at the same
time scatters elastically off the target nucleon. This process can be calculated as accurately
as the data on the nucleon elastic form factors. Physically, the Bethe–Heitler process is
a background to DVCS and can overshadow the latter signal if the former is too large.
On the other hand, with an appropriate size of Bethe–Heitler amplitude, one may hope to
measure its interference with the DVCS amplitude which can then be directly extracted
from data. The complete leading-order DVCS cross sections and the interference with the
Bethe–Heitler amplitude can be found in [58].

Recently, Guichon [67] made some interesting estimates of the cross sections at
COMPASS and Jefferson Lab energies. He found that while at low scattering energy,
the Bethe–Heitler background is quite large, it drops significantly at high energies when the
virtual-photon flux is large. In fact, if one is focused on production of real photons along
the direction of the virtual photon, the DVCS cross section is quite significant at COMPASS
energy, and certainly far above the Bethe–Heitler background. As far as studying the orbital
angular momentum of quarks is concerned, this is the most interesting kinematic region.
Guichon’s estimate is encouraging for a real experiment.

The one-loop corrections to DVCS have recently been studied by Ji and Osborne [68].
They have also been studied by Müller [69] and by Belitsky and Müller [63] using the
constraints from conformal symmetry. Results of these studies have been confirmed by
Mankiewicz et al [70]. Besides their obvious use in precision analysis, the results indicate
that DVCS is factorizable at the next-to-leading order. A higher-order calculation of the

Tµ⌫(pi, qj) = V1(pi, qj)ḡ
µ⇢
1 ḡ⌫2,⇢ + V2(pi, qj)(p · ḡ1)µ(p · ḡ2)⌫

+ V3(pi, qj)(q2 · ḡ1)µ(q1 · ḡ2)⌫ + V4(pi, qj)(p · ḡ1)µ(q1 · ḡ2)⌫

+ V5(pi, qj)(q2 · ḡ1)µ(p · ḡ2)⌫ +Aµ⌫⇢�(pi, qj)q1⇢q2�✏
�⇢µ⌫
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Lorentz boost and dilatation consist of O(1, 1) ⇥ O(1, 1) subgroup of the full
conformal transformations, O(4, 2).2.5 Small-x and Anomalous Dimensions for DIS:

O(1, 1)⌦O(1, 1)

• Moments, Dilatation, and Anomalous Dimensions:

Mn(Q
2) =

Z 1

0
dxx

n�2
F2(x,Q

2), Mn(Q
2) ! (Q)��n

“Anomalous dimension”

�j = �� j � ⌧, dimension = �, “spin” = j

for the twist-two, ⌧ = 2, operators, j even, appropriate for the DIS.

• x ! 0 limit, Lorentz Boost and E↵ective Spin:

F2(x,Q
2) ! x

�
, � = 1� jeff

for flavor-non-singlet, � ' 1/2,

(jeff ⌘ ⇢� intercept ' 1/2)

for flavor-singlet, (gluon), � ' �" < 0,

(jeff ⌘ tensor� gluonball� intercept ' 1 + ").

• x ! 1 and/or Q ! O(1)

IR physics – Confinement e↵ects.

• Unification:

�� j curve.

Theoretical Challenge: Calculate �(j) “non-perturbatively”.
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• Generalized PDF as HE Scattering:

* Unification of UV and IR physics

* Non-Perturbative Treatment and Conformal Invariance

* O(2, 2) = O(1, 1)⌦O(1, 1) vs O(4, 2) = O(3, 1)⌦O(1, 1):

• OPE and Conformal Block Expansion

• AdS/CFT and Holography QCD:

Pomeron as “Graviton” in AdS

• Holographic Treatment of DIS:

*Anomalous Dimension, DGLAP, etc.

* Confinement, Saturation, etc.

• Odderon, Pion, and TOTEM experiment at LHC
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�⇤(1) + �⇤(3) ! �⇤(2) + �⇤(4)

h0|T (J1(x1)J2(x2)J4(x4)J3(x3))|0i =
1

(x2
12)

�1(x2
34)

�3
F (M)(u, v)

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
23x

2
14

x2
13x

2
24

F (M)(u, v) =
X

↵

a(12;34)↵ G(M)
↵ (u, v)

leading to Singular behaviorLorentz Boost

New Variables: u = xx̄, v = (1� x)(1� x̄)

q ⌘ 2� x

x
, and q̄ ⌘ 2� x̄

x̄

w =
p
qq̄ '

p
u
�1 ! 1 � = (

p
q/q̄ +

p
q̄/q)/2 ! 1



HE scattering since AdS/CFT

Minkowski OPE and Scattering

F (w,�) =
X

↵

X

`

a(12),(34)`,↵ G(w,�; `,�`,↵)

D G�,`(u, v) = C�,` G�,`(u, v)

D = (1� u� v)@v(v@v) + u@u(2u@u � d)� (1 + u� v)(u@u + v@v)(u@u + v@v) ,
with �12 = 0, �34 = 0, and �ij = �i ��j

C�,` = �(�� d)/2 + `(`+ d� 2)/2

C�,` = (e�2 + è2)/2� (✏2 + ✏+ 1/2)

e� = �� (✏+ 1) , è= `+ ✏

C�,` = �+(�+ � 1) + (��(�� � 1) + 2✏��) �± = (�± `)/2

✏ = (d� 2)/2



HE scattering since AdS/CFT

F (w,�) =
X

`

Z 1

�1

d⌫

2⇡
a(`, ⌫)G(`, ⌫;w,�)

e� ⌘ i⌫ = �� d/2

a(`, ⌫) =
X

↵

r↵(`)

⌫2 + e�↵(`)2
=

X

↵

r↵(`)

2⌫

⇣ 1

⌫ + ie�↵(`)
+

1

⌫ � ie�↵(`)

⌘

Unitary Representation of O(5, 1)

G(`, ⌫;w,�) = G(+)(`, ⌫;w,�)+G(�)(`, ⌫;w,�), where G(+)(`, ⌫;w,�) = G(�)(`,�⌫;w,�),
with G(+) leading to convergence in the lower ⌫-plane and G(�) in the upper
⌫-plane

F (w,�) =
X

↵

X

`

a(12),(34)`,↵ G(w,�; `,�`,↵)

HE scattering after AdS/CFT

SO(4, 2) = SO(1, 1)⇥ SO(3, 1)

A(u, v)$
Z d/2+i1

d/2�i1

d�
2⇡i

X

j

aj(�) G�,j(u, v)

Euclidean CFT SO(5, 1) = SO(1, 1)⇥ SO(4)

Conformal Regge theory , meromorphic representation in the ⌫ � ` plane

Minkowski CFT:

a(`, ⌫) =
X

↵

r↵(`)

⌫2 + e�↵(`)2
=

X

↵

r↵(`)

2⌫

⇣ 1

⌫ + ie�↵(`)
+

1

⌫ � ie�↵(`)

⌘

Unitary Representation of O(4, 2)

A(u, v) =

Z d/2+i1

d/2�i1

d�

2⇡i

Z �✏+i1

�✏�i1

d`

2⇡i
a(�, `) G(u, v,�, `)

HE scattering after AdS/CFT

Dynamics aj(�) ⇠ 1
���j

! 1
���(j)

�(j)$ 4��(j)

Single Trace Gauge Invariant Operators of N = 4 SYM,

Symmetry of Spectral Curve:

Super-gravity in the �!1:

Tr[F 2]$ �, T r[Fµ⇢F⇢⌫ ]$ Gµ⌫ , · · ·

Tr[F 2], T r[Fµ⇢F⇢⌫ ], T r[Fµ⇢D
S
±F⇢⌫ ], T r[Z⌧ ], T r[DS

±Z⌧ ], · · ·

�2 = 0

Energy-Momentum Conservation built-in automatically.

ANOMALOUS DIMENSIONS:

�(j) = 2 +
p
2

qp
g2Nc(j � j0)

�n = 2
q

1 +
p

g2N(n� 2)/2� n

�(j,�) = �(j,�)� j � 2
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II. Gauge-String Duality: AdS/CFT

Aab
µ (x), �a

f (x)
Weak Coupling:

Gluons and Quarks:
Gauge Invariant Operators: �̄(x)�(x), �̄(x)Dµ�(x)

S(x) = TrF 2
µ⇥(x), O(x) = TrF 3(x)

Tµ⇤(x) = TrFµ�(x)F�⇤(x), etc.

Strong Coupling:
Metric tensor:
Anti-symmetric tensor (Kalb-Ramond fields):

Gmn(x) = g(0)
mn(x) + hmn(x)

bmn(x)

Other differential forms: Cmn···(x)

L(x) = L(G(x), b(x), C(x), · · · )

Dilaton, Axion, etc. �(x), a(x), etc.

L(x) = �TrF 2 + �̄ ⇤D� + · · ·

QCD EMERGENCE OF 5-DIM ADS 

HE scattering since AdS/CFT

Background and Motivation

The AdS/CFT is a holographic duality

that equates a string theory (gravity) in high dimension

with a conformal field theory (gauge) in 4 dimensions.

Specifically, compactified 10 dimensional super string theory

is conjectured to correspond to N = 4 Super Yang Mills theory

in 4 dimensions in the limit of large ’t Hooft coupling:

� = gsN = g2
ymNc = R4/↵02 >> 1.

ds2 =
R2

z2

⇥
dz2 + dx · dx

⇤
+ R2d⌦5 ! e2A(z)

⇥
dz2 + dx · dx

⇤
+ R2d⌦5

For AdS, A = � log(z/R). As The function A(z) is changed for z large, the
space is “deformed” away from pure AdS

“Soft-Wall”: A(z)! � log(z/R) + (⇤z)2
!21

Bulk Degrees of Freedom from type-
IIB Supergravity on AdS5:

⇤e
R

d4x�i(x)Oi(x)⌅CFT = Zstring [�i(x, z)|z�0 � �i(x)]

Supergravity limit

Strong coupling 

Conformal 

Pomeron as Graviton in AdS



HIGH ENERGY SCATTERING <=> POMERON

WHAT IS THE POMERON ?

F.E. Low. Phys. Rev. D 12 (1975), p. 163. 
S. Nussinov. Phys. Rev. Lett. 34 (1975), p. 1286. 

J = 2

AdS Witten Diagram: Adv.
 Theor. Math. Physics 2 (1998)253

S =
1

22

Z
d4xdz

p
�g(z)

⇣
�R+

12

R2
+

1

2
gMN@M�@N�

⌘

WEAK: TWO-GLUON       <=>       STRONG: ADS GRAVITON

Jcut = 1 + 1� 1 = 1



HE scattering since AdS/CFT

Unification and Universality:

Gauge/String Duality (AdS/CFT) 2-GLUONS � GRAVITON

•  Unification of Soft and Hard Physics in High Energy Collision

• Gauge Dynamics — Geometry of Space-Time

• Weak-Strong Duality

•  Improved phenomenology based on “Large Pomeron intercept”, e.g., DIS at 
small-x: (DGLAP vs Pomeron), Elastic/Total Cross sections, DVCS, Central 
Diffractive Higgs Production, etc.



HE scattering since AdS/CFT

Unification and Universality:

Gauge/String Duality (AdS/CFT) 2-GLUONS � GRAVITON

•  Unification of Soft and Hard Physics in High Energy Collision

• Gauge Dynamics — Geometry of Space-Time

• Weak-Strong Duality

•  Improved phenomenology based on “Large Pomeron intercept”, e.g., DIS at 
small-x: (DGLAP vs Pomeron), Elastic/Total Cross sections, DVCS, Central 
Diffractive Higgs Production, etc.



HE scattering since AdS/CFT

Unification and Universality:

Gauge/String Duality (AdS/CFT) 2-GLUONS � GRAVITON

•  Unification of Soft and Hard Physics in High Energy Collision

• Gauge Dynamics — Geometry of Space-Time

• Weak-Strong Duality

•  Improved phenomenology based on “Large Pomeron intercept”, e.g., DIS at 
small-x: (DGLAP vs Pomeron), Elastic/Total Cross sections, DVCS, Central 
Diffractive Higgs Production, etc.



QCD Pomeron <===> Graviton (metric) in AdS
Flat-space String Confinement

Conformal Invariance Pomeron in AdS Geometry
Fixed cut in J-plane:

Weak coupling:
(BFKL)

Strong coupling:Te

N = 4 Strong vs Weak g2Nc

2 4 6 8

0.5

1

1.5

2

j0

αN

Graviton

Two 
Gluon 

BFKL  BPST QCD?

j0 = 2
j0 = 1

j0 = 2� 2/
p

g2Nc
j0 = 1 + ln(2)g2Nc/⇡

2

j0 = 1.25?

Soft Pomeron trajectory [Donnachie, Landshoff]

Exchange of even spin glueballs (J � 2)

OJ ⇠ F↵[�1
D�2 . . . D�J�1F

↵
�J ]

• Trajectory selected by exchanged quantum numbers. For elastic scattering 
these are the vacuum quantum numbers.

Elastic cross sections in QCD

Chapter 1. Introduction

Figure 1.4: Total cross sections for elastic scattering at high energy. The cross sections rise
slowly due to pomeron exchange. (From reference [6])

trajectory[6, 4]

αP (t) ≃ 1, 08 + 0, 25 t , (GeV units) .

There is some evidence from lattice simulations that there are glueball states lying on this

trajectory starting from spin J = 2 [7, 8]. Furthermore, an even glueball state with spin 2

lying on the pomeron trajectory seems to have been found in experiments [9]. However, in real

QCD, glueball states mix with mesons and their identification is not clear [6]. An important

consequence of the pomeron intercept being larger than 1, is that hadrons effectively expand at

high energies. More precisely, the total cross section for elastic processes in QCD grows with

center–of–mass energy,

σ ∼ sαP (0)−1 ∼ s0.08 ,

as can be seen in figure 1.4. This expansion with energy reinforces the picture of hadrons as

stringlike objects. It is well known [10] that the average size of a fundamental string is given by

the divergent sum,

< R2 >∼ α′
∞
∑

n=1

1

n
,

coming from the contributions of zero point fluctuations of each string mode. However, in

a scattering experiment, only the modes with frequency smaller than the energy
√

s can be

4

jP (t) ⇡ 1.08 + 0.25t (GeV units)

� ⇠ s jP (0)�1 ⇠ s0.08

One Graviton Exchange at High Energy

• Draw all “Witten-Feynman” Diagrams in AdS5, 

• High Energy Dominated by Spin-2 Exchanges:

1 Introduction

Paper I: AdS5 Witten Diagrams at high energy. Effective Lagragian. Remark on BPST

Pomeron paper. Eikonal anzats.

Paper I: Box diagram and Shock wave eikonal sum

Here we reformulate the computaiton of Witten diagrams in AdS5 space with and without a IR

cut-off suitable for the study of hight energy scattering. This provides a framework for going

beyond the leading large N limit studied in BPST Regge limit in the extreme super gravity

approximaiton.

2 Basics

p1 + p2 → p3 + p4 (2.1)

S =

∫

dz
√

g
{

∂Mφ(z)gMN∂Nφ(z) + ∆(∆− d)φ2(z)
}

(2.2)

where d = 4, and the AdS5 background metric is

d2z =
1

z2
0

{

dxµdxµ + d2z0

}

(2.3)

Scalar propagator:

⟨φ∆(z)φ∆(w)⟩ = G(5)
∆ (z,w) (2.4)

satisfies
{

−
1
√

g
∂M

√
ggMN∂N + ∆(∆− d)

}

G(5)
∆ (z,w) = δ5(z − w) (2.5)

Conformal Invariance leads to Isometries of ADS5, G(5)
∆ is a function of

u =
(x − y)2 + (z0 − w0)2

2z0w0
(2.6)

spin S field,

(−∂z0
z−(d−1−2S)
0 ∂z0

+ q2 z−(d+1−2S)
0 + z−(d−1−2S)

0 m2)φ(u) = 0 (2.7)

2

Figure 9: The t-channel exchange graph

As in the past, we simplify the integral by using translation invariance to translate x1 to
0, and then performing an inversion. As a result,

A(w, x1, x3) = |x13|−2∆3I(w′ − x′
13) , I(w) =

∫

H

d5z

z5
0

G∆(w, z)
z∆1+∆3
0

z2∆3
(7.32)

We now use the fact that G∆ is a Green function and satisfies ( w +∆(∆−d))G∆(w, z) =
δ(w, z), so that

( w +∆(∆− d))I(w) =
w∆1+∆3

0

w2∆3
(7.33)

In terms of the scale invariant combination ζ = w2
0/w

2, we have I(w) = w∆13
0 fS(ζ), ∆13 =

∆1 −∆3 and the function fS now satisfies the following differential equation

4ζ2(ζ − 1)f ′′
S + 4ζ [(∆13 + 1)ζ −∆13 + d/2 − 1]f ′

S (7.34)

+(∆−∆13)(∆+∆13 − d)fS = ζ∆3

Making the change of variables σ = 1/ζ , we find that the new differential equation is
manifestly of the hypergeometric type and is solved by

fS(ζ) = F
(
∆−∆13

2
,
d −∆−∆13

2
;
d

2
; 1 − 1

ζ

)
(7.35)

The other linearly independent solution to the hypergeometric equation is singular as
ζ → 1, which is unacceptable since the original integral was perfectly regular in this limit
(which corresponds to w⃗ → 0).

It is easier, however, to find the solutions in terms of a power series, fS(ζ) =
∑

k fSkζk.
Upon substitution into (7.34), we find solutions that truncate to a finite number of terms
in ζ , provided ∆1 +∆3−∆ is a positive integer. Notice that k need not take integer values,
rather k −∆3 must be integer. The series truncates from above at kmax = ∆3 − 1, so that
fSk = 0 when k ≥ ∆3, and

fSk =
Γ(k)Γ(k +∆13)Γ(1

2{∆1 +∆3 −∆})Γ(1
2{∆+∆1 +∆3 − d})

4Γ(∆1)Γ(∆3)Γ(k + 1 + 1
2{∆13 −∆})Γ(k + 1 + 1

2{∆13 +∆− d})
(7.36)

Still under the assumption that ∆1 +∆3 −∆ is a positive integer, the series also truncates
from below at kmin = 1

2(∆−∆13).
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• Strong Coupling Pomeron has

• Need to consider         finite.

• For QCD, needs confinement to introduce a scale.

J = 2

�



1 Outline

• Generalized PDF as HE Scattering:

* Unification of UV and IR physics

* Non-Perturbative Treatment and Conformal Invariance

* O(2, 2) = O(1, 1)⌦O(1, 1) vs O(4, 2) = O(3, 1)⌦O(1, 1):

• OPE and Conformal Block Expansion

• AdS/CFT and Holography QCD:

Pomeron as “Graviton” in AdS

• Holographic Treatment of DIS:

*Anomalous Dimension, DGLAP, etc.

* Confinement, Saturation, etc.

• Odderon, Pion, and TOTEM experiment at LHC

• Pomeron/Odderon intercept and AdS/CFT
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BASIC BUILDING BLOCK
•Elastic Vertex: 

•Pomeron/Graviton Propagator:

Gj(z, x?, z0, x0?) =
1

4⇥zz0
e(2��(j))�

sinh �
,

K(s, b, z, z0) = �
✓

(zz0)2

R4

◆ Z
dj

2�i

✓
1 + e�i�j

sin �j

◆
bsj Gj(z, x?, z0, x0?; j)

�(j) = 2 +
p

2 �1/4
p

(j � j0)

conformal: 

confinement: discrete sumGj(z, x?, z0, x0?; j)

ELASTIC VS DIS  ADS BUILDING BLOCKS

d3b ⌘ dzd2x?
p
�g(z) where g(z) = det[gnm] = �e5A(z)

A(s, x? � x0
?) = g20

Z
d3bd3b0�12(z)G(s, x? � x0

?, z, z
0)�34(z

0)

for F2(x,Q)

�13(z) ! ��⇤�⇤(z,Q) =
1

z
[Qz)4(K2

0 (Qz) +K2
1 (Qz)]

�T (s) =
1

s
ImA(s, 0)

ADS BUILDING BLOCKS BLOCKS

d3b ⌘ dzd2x?
p
�g(z) where g(z) = det[gnm] = �e5A(z)

A(s, t) = g2
0

Z
d3bd3b⇥ eiq?·(x�x0) �13(z) K(s,x� x⇥, z, z⇥) �24(z⇥)

A(s, t) = g2
0

Z
d3bd3b⇥ eiq?·(x�x0) �13(z) K(s,x� x⇥, z, z⇥) �24(z⇥)

A(s, t) = �13 � eKP � �24 .
For 2-to-2  

For 2-to-3

A(s, s1, s2, t1, t2) = �13 � eKP � V � eKP � �24 ,

W (w,�2) = W0(w,�2)�
X

↵

Z L0+i1

L0�i1

d`

2⇡i

1 + e�i⇡`

sin⇡`
a(12),(34)↵ (`)K↵(w,�0; `)

ImW (w,�2) =
X

↵

Z L0+i1

L0�i1

d`

2i
a(12),(34)↵ (`)K↵(w,�2; `)

Deep-Inelastic Scattering as Minkowski CFT

Reduction to d = 2:
Discontinuity:
Mellon Representation:

W2(w,�2) =
P

↵

P
` even a↵(`)K↵(w,�2; `)

Dilatation: ! dM(�2,2n)
d log �2

' �(�(2n)� 2)A(�2, 2n) ! DGLAP

Lorentz Boost ! F2(w,�) ' w`eff�1 ! E↵ective Spin, `eff



HE scattering after AdS/CFT

aj(�) ⇠ 1
���j

! 1
���(j)

�(j)$ 4��(j)

Single Trace Gauge Invariant Operators of N = 4 SYM,

Symmetry of Spectral Curve:

Super-gravity in the �!1:

Graviton Spectral Curve:

Tr[F±?Dj�2
± F?±], j = 2, 4, · · ·

�(2) = 4; �(j) = O(�1/4)!1, j > 2

HE scattering after AdS/CFT

aj(�) ⇠ 1
���j

! 1
���(j)

�(j)$ 4��(j)

Single Trace Gauge Invariant Operators of N = 4 SYM,

Symmetry of Spectral Curve:

Super-gravity in the �!1:

Graviton Spectral Curve:

Tr[F±?Dj�2
± F?±], j = 2, 4, · · ·

�(2) = 4; �(j) = O(�1/4)!1, j > 2

HE scattering since AdS/CFT

Spectral Curve:

ImF (w,�) = ±
X

↵

Z L0+i1

L0�i1

d`

2i
a(12),(34)(`,�↵(`))G(w,�; `,�↵(`))

�P (`) ' 2 +B(`)
p

`� `eff

ImF (w,�) ⇠ w`eff�1

| lnw|3/2
1 2 3 4

Δ
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1.0
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J

λ<<1

λ*

λ>>1

�(`)(�(`)� d) = m2
AdS(`) d = 4, m2

AdS(`) =
X

n=1

�n(`� 2)n

B.Basso, 1109.3154v2

Simultaneous compatible large Q2 and small x evolutions!

�2 = 0

Energy-Momentum Conservation built-in automatically.

MOMENTS AND ANOMALOUS DIMENSION

�(j) = 2 +
p
2

qp
g2Nc(j � j0)

�n = 2
q

1 +
p

g2N(n� 2)/2� n

Mn(Q2) =
R 1
0 dx xn�2F2(x,Q2)! Q��n



F2(x, Q2) � (1/x)�effective)

�eff (Q2)

HERA vs LHeC region:  dots are H1-ZEUS small-x data points

Saturation of Froissart Bound

•The Confinement deformation 
gives an exponential cutoff for b 
> bmax ~c log (s/s0), 

•Coefficient c ~ 1/m0,  m0 being 
the mass of lightest tensor 
glueball.

•Froissart is respected and 
saturated.

Disk picture

bmax

bmax determined by confinement.



1 Outline

• Generalized PDF as HE Scattering:

* Unification of UV and IR physics

* Non-Perturbative Treatment and Conformal Invariance

* O(2, 2) = O(1, 1)⌦O(1, 1) vs O(4, 2) = O(3, 1)⌦O(1, 1):

• OPE and Conformal Block Expansion

• AdS/CFT and Holography QCD:

Pomeron as “Graviton” in AdS

• Holographic Treatment of DIS:

*Anomalous Dimension, DGLAP, etc.

* Confinement, Saturation, etc.

• Odderon, Pion, and TOTEM experiment at LHC

• Pomeron/Odderon intercept and AdS/CFT
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Size and Shape of Hadrons

6.1 New LHC data and IR Physics:

• new structure at �0.05 < t < 0

Importance of “two-Pion shadow”.

• establishing dip structure at �t ' 1� 2

Strong evidence of Odderon.

21

2

dσ
(t
)/
dt

|t| (GeV2)0

”break”

dip

exponential

0.1 1.0

absorptions
result in a dip

Gaussian
(exponential in t)

”tail”, seen
as a ”break” in t

h(
b)

b  (Fermi)1.0

Fig. 1 Schematic (qualitative) view of the "break", followed by the diffraction minimum ("dip"), shown both as function in t and its Fourier
transform (impact parameter representation), in b. While the "break" reflects the presence of the pion cloud around the nucleon at the outer edge
of an expanding disk in b, the dip results from absorption corrections, suppressing the impact parameter amplitude at small b.

Fig. 2 Diagram for elastic scattering with t-channel exchange containing a branch point at t = 4m2
p .

Fig. 3 Local slopes B(t) calculated for the ISR data at 21 and 30 GeV (left) and 45 and 53 GeV (right) [11].

the ISR [11], TOTEM quantifies the deviation from the ex-
ponential by normalizing the measured cross section to a
linear exponential form, (see Eq. (10) below). For the sake
of completeness we will exhibit this “break effect" both in
the normalized form and for B(t).

The "break" (in fact a smooth deflection of the linear
exponential) of the cone, has a relatively narrow location
around �t ⇡ 0.1±0.01 GeV2, both at the ISR and the LHC

energies, whereupon it recovers its exponential shape, fol-
lowed by the dip, whose position is energy-dependent.

The new LHC data from TOTEM at 8 TeV confirm the
conclusions [3–6] about the nature of the break and call for a
more detailed analysis and better understanding of this phe-
nomenon. The new data triggered intense theoretical work
in this direction [9, 10, 12], but many issues still remain
open. The curvature of B(t), both at the ISR and the LHC

Expect sharp-structure at x ! 1.

F (x) ' x�(1� x)�

TOTEM Elastic cross section at LHC

L. Jenkovszky, I. Szany and C-I Tan, “Shape of Hadron and Pion Cloud”,

Eur. Phys. J. A (2018) 54:116, arXiv 1710.10594PJ-C,
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IV: Pomeron in the conformal Limit, 
OPE, and Anomalous Dimensions 

Massless modes of a closed string theory: 

Need to keep higher string modes 

                            As CFT, equivalence to OPE in strong coupling:   using AdS 

Gmn = g0
mn + hmn

HE scattering after AdS/CFT

Full O(4, 2) Conformal Group

SO(4, 2) = SO(1, 1)⇥ SO(3, 1)

A(u, v)$
Z d/2+i1

d/2�i1

d�
2⇡i

X

j

aj(�) G�,j(u, v)

Dynamics aj(�) ⇠ 1
���j

! 1
���(j)

DGLAPP
BFKL
BPST Pomeron

Anomalous dimensions

�(j) = �(j)� j � ⌧twist

Graviton/Pomeron Regge trajectory [Brower, Polchinski, Strassler, Tan 06]

• Operators that contribute are the twist 2 
operators

OJ ⇠ F↵[�1
D�2 . . . D�J�1F

↵
�J ]

• Dual to string theory spin J field in leading 
Regge trajectory

�
D2 �m2

�
ha1...aJ = 0

m2 = �(�� 4)� J , � = �(J)

• Diffusion limit

J(�) = J0 +D (�� 2)2 m2 =
2

↵0 (J � 2)� J

L2)

2

4

1 2 4

⇠ ln J

BFKL

J

�� 2

GRAVITON

BFKL

G

q� k0

q� k

k

k0

= + . . .+

| {z }

G(0)(k,q)

k q� k

Balitsky, Fadin, Kuraev, Lipatov
(BFKL): perturbative Pomeron. Large
logs get in the way of usual perturabtion
theory: resum –s log(s) to all orders. Bfkl
equation – integral equation for Green’s
function in Mellin space

G(k, k
Õ, q, Y ) =

+iŒ⁄

≠iŒ

dÊ
2fii eY ÊfÊ(k, k

Õ, q) æ
+iŒ⁄

≠iŒ

dÊ
2fii eY Ê

ÿ

nœZ

1

2
+iŒ⁄

1

2
≠iŒ

d“
2fi i

E“,n(k)E ú
“,n(k Õ)

Ê ≠ –̄s‰(“, n)

where in Leading Log (LL)

‰(“, n) = 2Â(1) ≠ Â(“ + |n|
2 ) ≠ Â(1 ≠ “ + |n|

2 ) and Ê0 = 4–sNc

fi
ln(2)

Surprising conformal symmetry greatly simplifies things in coordinate space

Brower, Costa, Djuric, Nally, TR, Tan (KU) 9/15/17 4 / 19
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Formal Treatment via World-Sheet OPE

• Flat Space Pomeron Vertex Operator 

• Flat Space Odderon Vertex Operator 

• Pomeron Vertex Operator in AdS 

• Odderon Vertex Operator in AdS

43

(L0 � 1)VP = (L̄0 � 1)VP = 0

Simultaneous compatible large Q2 and small x evolutions!

�2 = 0

Energy-Momentum Conservation built-in automatically.

MOMENTS AND ANOMALOUS DIMENSION

�(j) = 2 +
p
2

qp
g2Nc(j � j0)

�n = 2
q

1 +
p

g2N(n� 2)/2� n

Mn(Q2) =
R 1
0 dx xn�2F2(x,Q2)! Q��n



e�(S)2 = ⌧2 + a1(⌧,�)S + a2(⌧,�)S2 + · · ·

POMERON AND ODDERON IN STRONG COUPLING:
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POMERON

ODDERON

Solution-a:

Solution-b:

Brower, Polchinski, Strassler, Tan
Costa, Goncalves, Penedones (1209.4355)

Kotikov, Lipatov (1301.0882)

Brower, Costa, Djuric, Raben, Tan (to appear shortly.)
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N = 4 Strong vs Weak g2Nc
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Summary and Outlook  
for AdS-CFT for QCD

Provide meaning for Pomeron non-perturbatively from first principles. 

Realization of conformal invariance beyond perturbative QCD 

First principle description of elastic/total cross sections, DIS at small-x, 
Central Diffractive Glueball production at LHC, etc.  

New starting point for unitarization, saturation, etc. 

Inclusive Production and Dimensional Scalings. 

Other “non-perturbative” physics, (e.g., blackhole physics, locality in 
the bulk).


“Discrete Approach to AdS/CFT”.
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