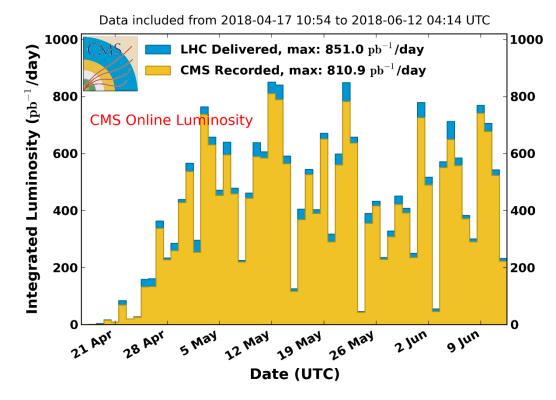


Emerging Jets signatures of a composite Dark Sector in the CMS detector ... and other long-lived states

A. Belloni

University of Maryland

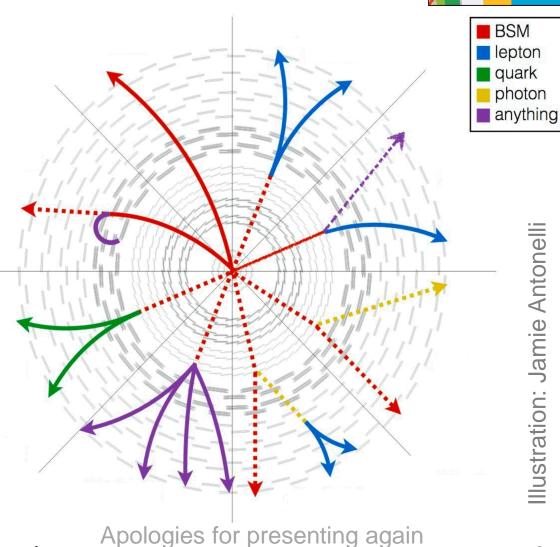
New Physics with Displaced Vertices June 20th-22nd, 2018 National Tsing Hua University



Motivations

- Standard Model so far has withstood all challenges from precision measurements
 - Alas, no new physics yet, but wealth of data available to search for exotic signatures
- Search for Long-Lived Particles is well motivated theoretically
 - Small couplings; phase-space suppressions; conserved (or nearly conserved) symmetries
- Spectacular signatures are possible, requiring a different way to look at experimental data
 - Dedicated tools needed to exploit key ingredients: displacement, timing, material interactions

CMS Integrated Luminosity Per Day, pp, 2018, $\sqrt{s}=$ 13 TeV



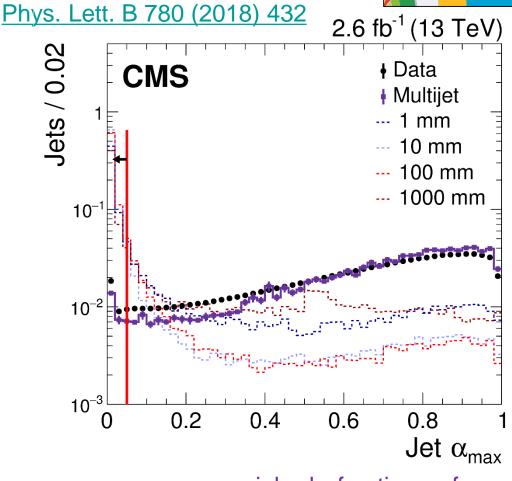
About 0.5/fb collected per day in 2018 Expect 150/fb by end of year; 300/fb by 2023

A Wealth of Unusual Signatures

- Three major classes of signatures
 - Displaced objects
 - Disappearing/kinked tracks
 - Heavy stable charged particles (HSCP)
- Focus on displaced vertices (and more)
 - Could encompass displaced dijet, lepton, dilepton, conversion
- Executive summary of talk
 - Review of most recent CMS results pertaining long-lived states (with focus on displaced objects)
 - Presentation of emerging-jet analysis
 - First dedicated search in BSSW dark-QCD model

the same signature summary...

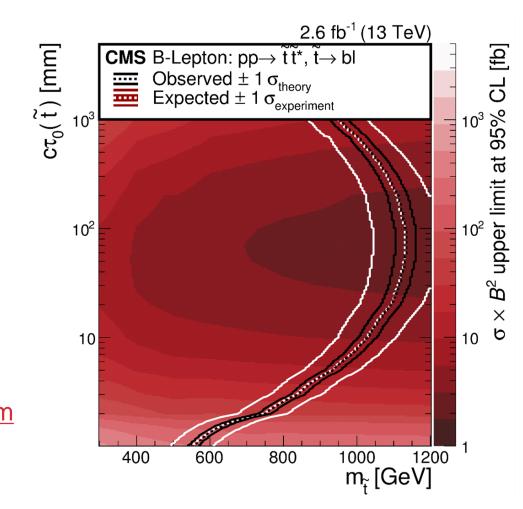
A. Belloni :: Emerging Jets


3

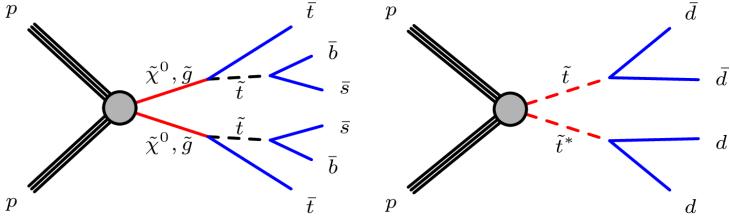
Inclusive Displaced Jets (1)

- Search for long-lived particles using customized topological triggers
 - Require jets with no more than two associated prompt tracks, and at least one track with impact parameter significance larger than 5
- Three criteria to tag displacement
 - Compatibility with primary vertex, jet tracks impact parameter significance, emission angle
- Consider displaced jet multiplicity to set limits on new particles decaying within 1mm to 1m from primary vertex
 - A general approach that allows to cover a variety of event topologies (including leptons), without requiring the explicit reconstruction of a displaced vertex

 α_{max} : p_T -weighed fraction of prompt tracks associated with jet

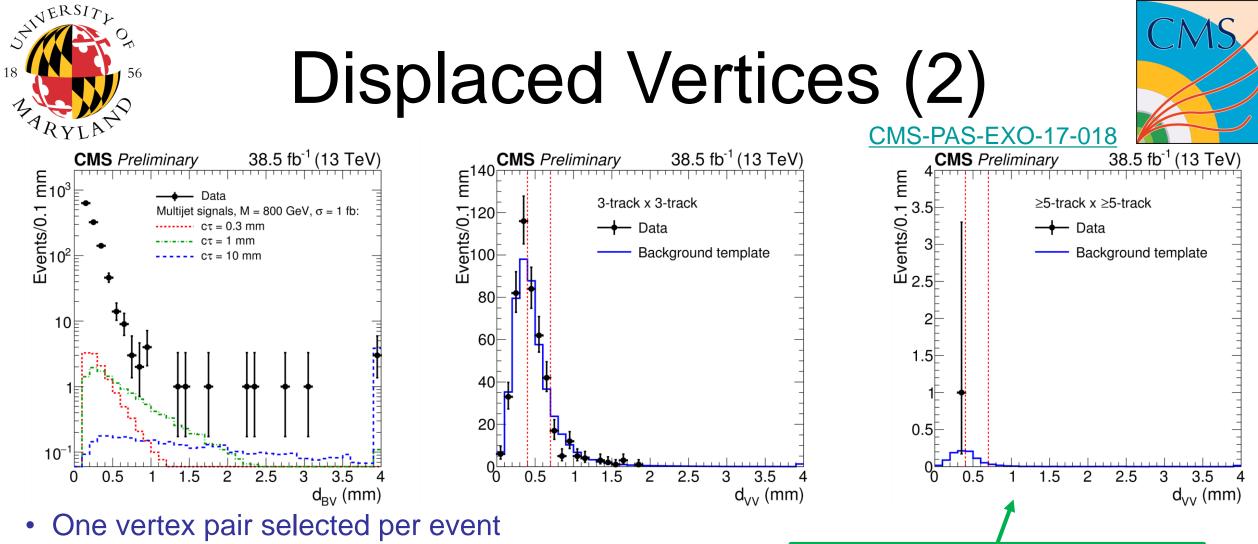

Inclusive Displaced Jets (2)

 Observed 1 event with exactly two tagged jets, and no events with at least three tagged jets


- No excess observed, results consistent with expectations
- Exclusion limits set on various models
 - Scalar neutral particle decaying to di-jet
 - RPV stop decaying to b quark + lepton
 - Also separately by lepton flavor
- RPV stop cross section limit translated into mass exclusion bound, assuming equal lepton branching fractions
 - Exclude stop mass between 550 and 1130GeV, currently most stringent bound for top squarks with $c\tau$ larger than 3mm

Phys. Lett. B 780 (2018) 432

Displaced Vertices (1)



- Search for pair-produced long-lived particles decaying to multiple jets
 - Signal events characterized by presence of two displaced vertices with large number of tracks
- Candidate signal events tagged using transverse displacement between vertex pairs
 - Fit performed in three bins of d_{VV}
- Specifically addressed two benchmark models
 - Multi-jet: minimal flavor-violating RPV SUSY, neutralino or gluino long-lived LSP
 - Di-jet: pair-produced long-lived top squark in RPV SUSY

38.5 fb⁻¹ (13 TeV) **CMS** *Preliminary* шШ Background template 0.9 Multijet signals, M = 800 GeV, σ = 1 fb: Events/0 $c\tau = 0.3 \text{ mm}$ 0.8 $c\tau = 1 \text{ mm}$ $c\tau = 10 \text{ mm}$ 0.7 0.6 0.5 0.4 0.3 0.2 0.1 2.5 0.51.52 3 3.5 d_{VV} (mm)

6/22/2018

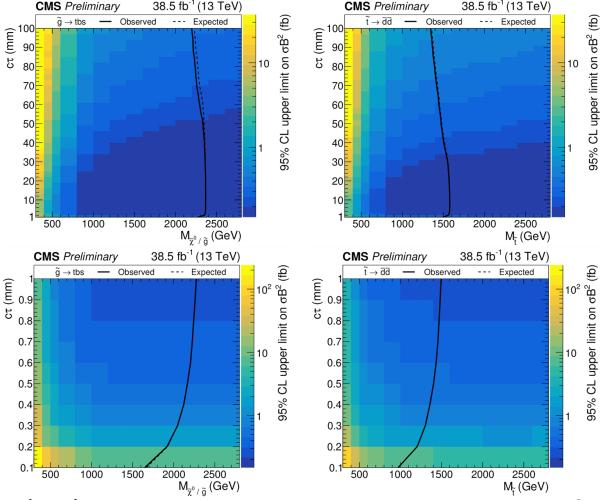
- Highest track multiplicity, then max vertex mass
- Template fit of d_{VV} distributions
 - Background template built from 1-vertex data events
 - Ingredients: d_{BV} (transverse vertex-beam distance) and $\Delta \phi_{JJ}$ (azimuthal angle between jet pairs)

6/22/2018

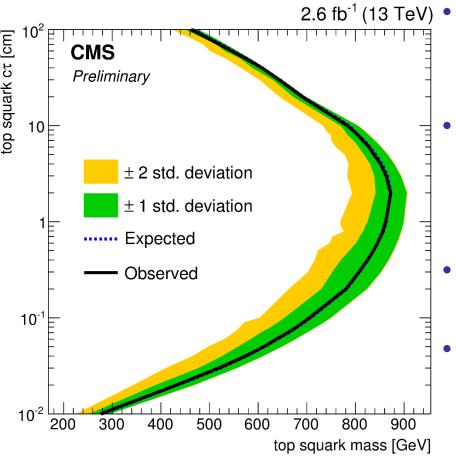
A. Belloni :: Emerging Jets

Limits on production cross sections

of new states extracted from this plot

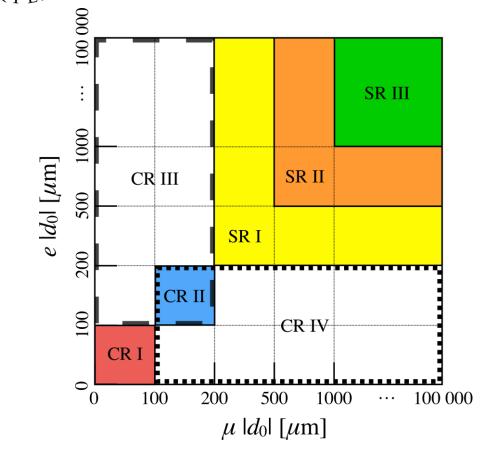

Displaced Vertices (3)

- No excess yield above the prediction from standard model processes is observed
 - Excluded cross section times branching fraction squared above approximately 0.3fb for long-lived particles with mass between 800 and 2600GeV and mean proper decay length between 1 and 40mm
- Specific interpretation in RPV SUSY sets limits to gluino and top squark masses
 - Excluded gluino masses below 2200GeV and top squark masses below 1400GeV, for mean proper decay lengths between 0.6 and 80mm
- Results relevant also to other models with longlived states decaying to final states with multiple tracks
 - <u>Improved technique</u>, in addition to larger statistics and increase in center-of-mass energy, tighten the constraints set with the 8TeV data sample


CMS-PAS-EXO-17-018

6/22/2018

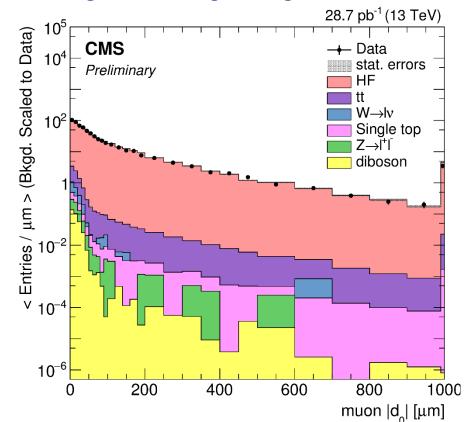
Displaced Leptons (1)


2.6 fb⁻¹ (13 TeV) • Search for pair production of long-lived top squarks, decaying to electron+b and muon+b

CMS-PAS-EXO-16-022

- Displaced SUSY with RPV top squark decay
- Event selection exclusively focused on displaced leptons from different vertices
 - Not relying on hadronic activity and/or E_T^{miss} allows analysis to maintain sensitivity to models with lepton displacements up to 10cm
- Three search regions investigated
 - Lepton $|IP_{2D}|>0.2, 0.5, 1mm$
- No excess observed: excluded stop with mass smaller than 870GeV, with proper decay length equal to 2cm
 - <u>Most stringent limit to date on Displaced SUSY model with RPVdecaying top squark</u>

Displaced Leptons (2)



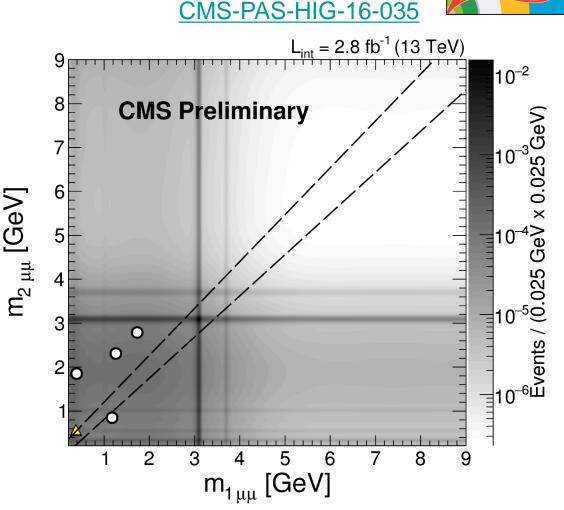
Three exclusive signal regions and four control region defined by lepton impact parameters

Muon+heavy-flavor jet control region $|d_0(\mu)|$ used to model heavy-flavor background in signal region

CMS-PAS-EXO-16-022


6/22/2018

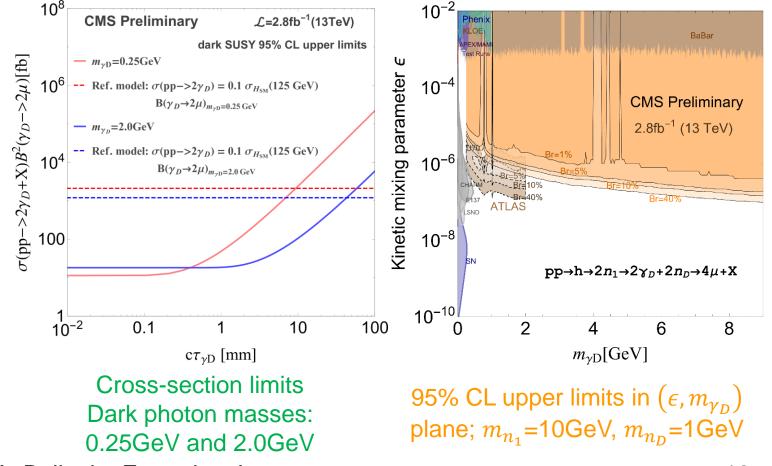
STIVERSITL


18

Displaced Di-Muon Pairs (1)

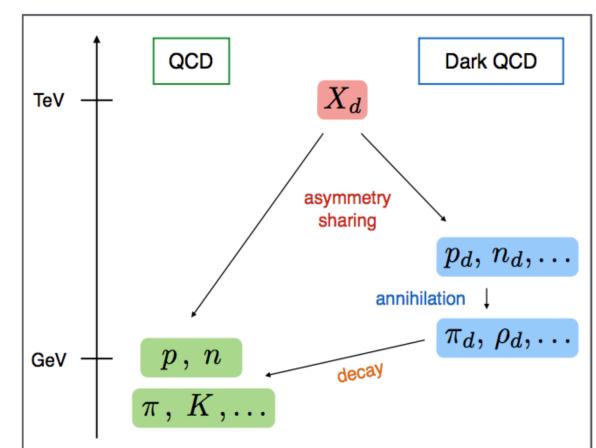
- Search for displaced di-muon pairs from decay of long-lived light boson, with mass between 0.25 and 8.5GeV
 - Benchmark models: next-to-minimal SUSY and SUSY with a hidden sector (dark SUSY)
- Require di-muon pairs to have the same mass
 - Investigate displaced decays up to 9.8cm on transverse plane, and 46.5cm along *z* axis

One event in signal region (\triangle)


Displaced Di-Muon Pairs (2)

- Focus (personal choice) on dark-SUSY model
 - Results on NMSSM interpretation reported in public note
- Model-independent limit of 1.7fb on $\sigma(pp \rightarrow 2a + X) \cdot BR(a \rightarrow \mu\mu)$
 - Re-interpreted in $c\tau(\gamma_D)$ -dependent cross-section limit in Dark-SUSY scenario
- Excluded large parameter space in (ϵ, m_{γ_D}) plane previously unconstrained
 - Dark photon lifetime directly related to kinetic mixing parameter ϵ and dark photon mass

Dark-SUSY interpretation


CMS-PAS-HIG-16-035

Emerging Jets

- Emerging jets represent the signature of a Dark-QCD model presented by Bai, Schwaller, Stolarski and Weiler
 - arxiv:1306.4676 and arxiv:1502.05409
 - DM candidate is the dark baryon
- The existence of a dark-QCD sector is posited, with a massive mediator that couples SM and dark quarks
 - The dark quarks hadronize into dark mesons, which then decay into SM jets via the mediator
- Dark mesons can have lifetimes from centimeters to meters
 - Analysis focus on jets produced within the CMS tracker

CMS-PAS-EXO-18-001

6/22/2018

Model Parameters

Xeronom

 Q_d

 \overline{O}'_{J}

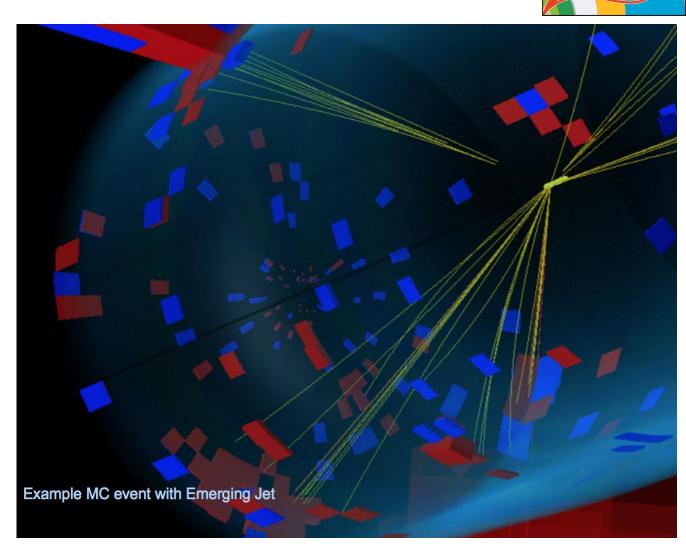
- Dark force
 - SU(N) symmetry; seven dark colors
 - Confinement scale set equal to twice the dark pion mass
- Dark mediator X_d
 - Scalar, SU(3) color triplet
 - Fractional charge; Yukawa coupling to SM quark and dark quark
 - Satisfy restrictions from FCNC, neutral meson mixing, rare decays by assuming all couplings are negligible except for coupling to down quark
 - <u>Mass</u> of order TeV
- Dark mesons π_d and ρ_d
 - Mass of order 1-10GeV
 - Lifetime of order 1mm to 3m

 Mediator is QCD-colored ⇒ pair-produced via quark-antiquark or gluon fusion

 Q_d

 \overline{Q}'_d

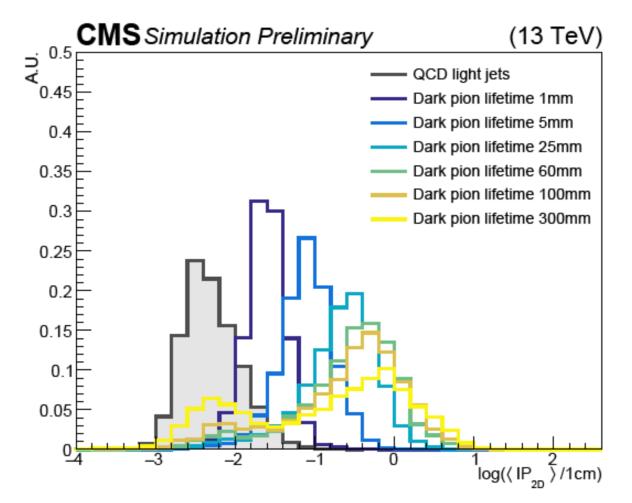
00000


- Mediator decays promptly to light QCD quark and dark quark ⇒ two prompt light jets
- Dark pions decay with sizeable lifetime ⇒ two emerging jets

6/22/2018

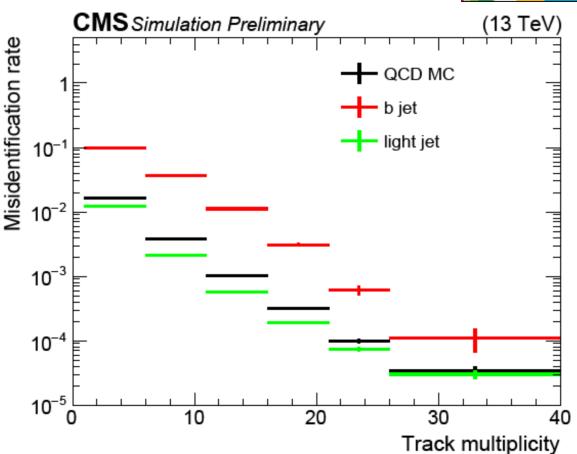
Striking Signature

- Two prompt jets + two emerging jets
 - Two heavy mediator produced: can use large event Q² to trigger events
- Investigated large range of model
 parameters
 - Mediator mass: 400-2000GeV
 - Dark pion mass: 1-10GeV
 - Dark pion lifetime: 1-1000mm
- Experimentally challenging
 - Short lifetime: SM displaced vertices (e.g., b quarks); mismeasurements
 - Long lifetime: low tracking efficiency

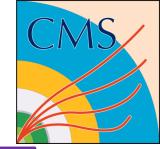


Quantifying Displacement

- Key ingredient in analysis is emerging-jet tagging
 - Need to define robust estimator of jet displacement, stable up to many cm from primary interaction vertex
- Four variables define different flavors of emerging-jet tagger
 - $\langle IP_{2D} \rangle$: median of unsigned transverse impact parameter of tracks associated to jet
 - $PU_{\delta z}$: distance between the *z* position of the primary vertex (PV) and of a track at its point of closest approach it
 - D_N : a 3D impact parameter significance, assuming a *z* resolution of 100µm
 - α_{3D} : the p_T-weighed fraction of tracks associated to a jet that are below a D_N threshold
- Final selection optimized for each grid point in model parameter space
 - An E_T^{miss} cut is added for long lifetimes, to compensate for the loss in tracking efficiency



Background Estimate


- The dominant background is QCD jet production
 - QCD jets can mimic the emerging-jet signature with a probability that depends on the flavor of the initiating parton and the jet track multiplicity
- A data-driven method is defined to estimate the background
 - Mimicking failures of tracking is not a job that Monte Carlo simulated events do well
- Determining the contribution of b quarks is critically important
 - They mostly come in pairs, and b hadrons do have a non-negligible lifetime

Misidentification rate for jets initiated by a b quark is one order of magnitude larger than for light-quark jets

Misidentification Rate Measurement

- The misidentification rates are measured in a signal-depleted data sample: γ+jet
 - They will then be applied to data samples with one or zero emerging-tagged jets
- A matrix method is designed to measure the misidentification rate for light and b jets in data
 - Two samples with a different fraction of b jets are selected by applying a cut on a b-tagging discriminator
- The misidentification rate, binned in track multiplicity, is applied to events in QCDenhanced control regions
 - The misidentification rate is averaged using the fitted b-jet fraction in data

Measure fraction of b jets in samples 1 and 2 (b-enhanced and b-depleted) with template fit of b-tagging discriminator: f_{b1} and f_{b2}

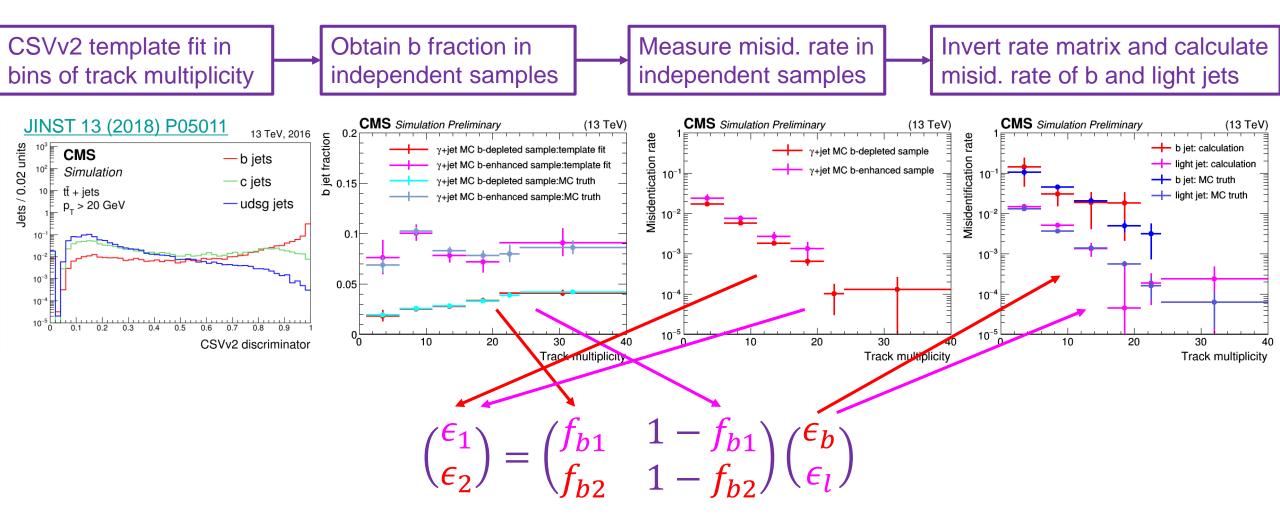
Measure misidentification rate in samples 1 and 2 : ϵ_1 and ϵ_2

Invert the misidentification rate equation:

$$\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix} = \begin{pmatrix} f_{b1} & 1 - f_{b1} \\ f_{b2} & 1 - f_{b2} \end{pmatrix} \begin{pmatrix} \epsilon_b \\ \epsilon_l \end{pmatrix}$$

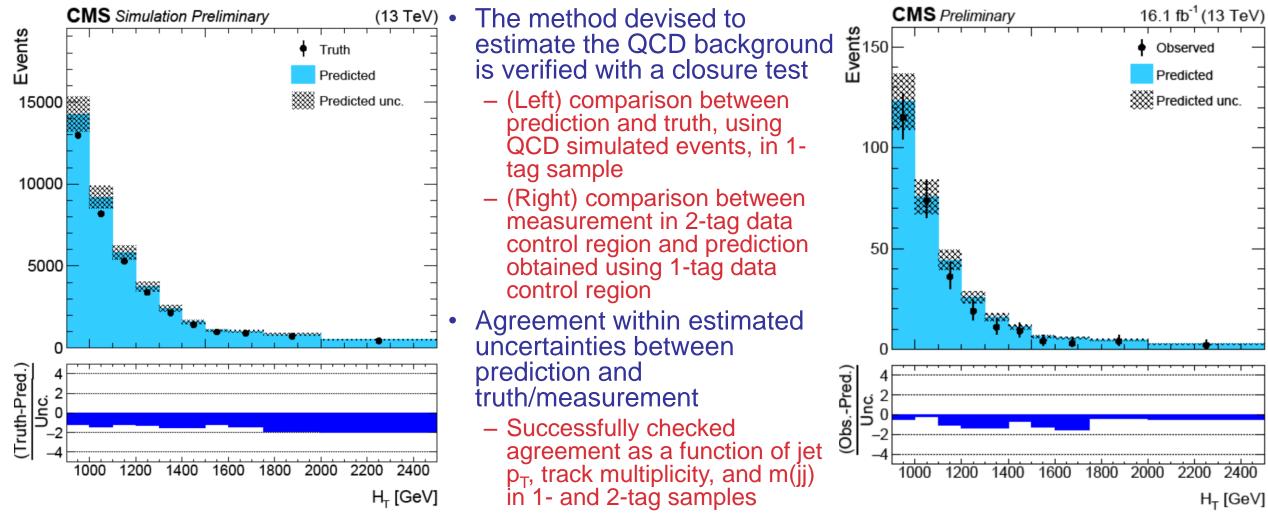
and obtain the rates for b and light jets: ϵ_b and ϵ_l

Calculate average misidentification rate in QCD-enhanced control region:


 $\epsilon_{f,CR} = f_{b,CR} \epsilon_b + (1 - f_{b,CR}) \epsilon_l$

and apply to each jet in control region with correct combinatorial factor

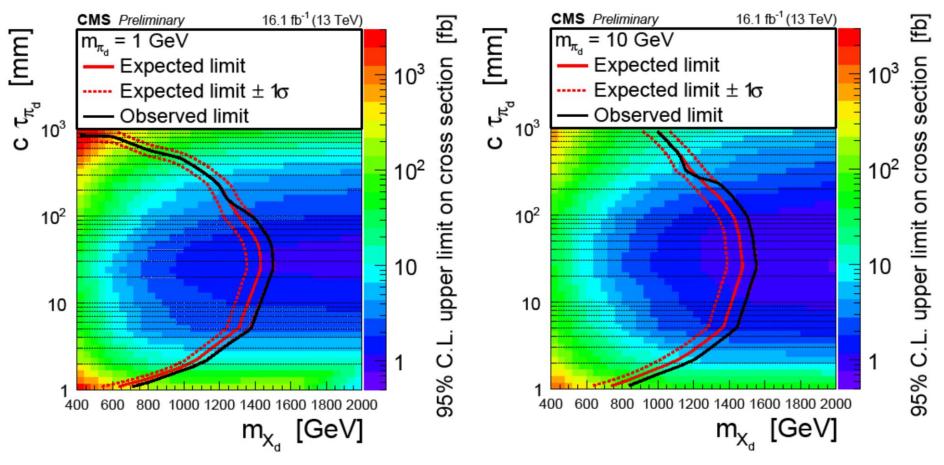
A Pictorial View



6/22/2018

Closure Test

A. Belloni :: Emerging Jets


2400

20

Setting Limits

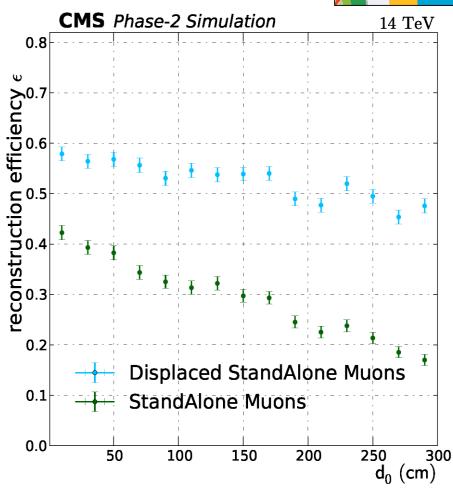
<u>CMS-PAS-EXO-18-001</u>

- No excess observed over SM expectations
 - Excluded mediator masses in the 400 to 1250GeV range, for dark-pion decay lengths in the 5 to 225mm range; limits set with dark-pion masses of 1, 2, 5, and 10GeV
- First dedicated search for emerging jets in BSSW model at the LHC

STIVERSITL

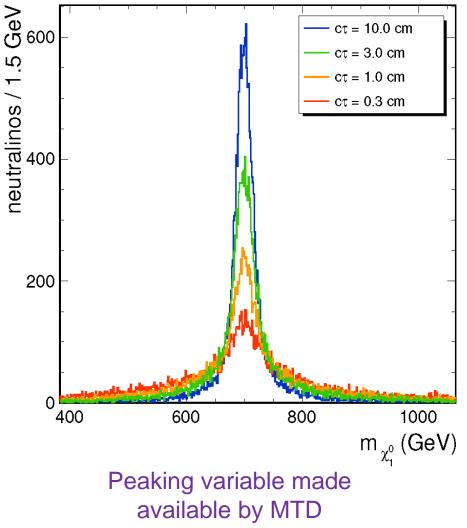
18

More LLP Results...


- Disappearing / kinked tracks
 - Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at sqrt(s)=13TeV, <u>arXiv:1804.07321</u>, submitted to JHEP
- Heavy Stable Charged Particles (HSCP)
 - Search for heavy stable charged particles with 12.9fb⁻¹ of 2016 data, <u>CMS-PAS-EXO-16-063</u>
- Stopped exotic LLP
 - Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at sqrt(s)=13TeV, <u>JHEP 05 (2018) 127</u>
- Leptoquarks in Displaced RPV SUSY
 - Search for pair-production of first generation scalar leptoquarks in pp collisions at sqrt(s)=13TeV with 2.6fb⁻¹, <u>CMS-PAS-EXO-16-043</u>
- Re-interpretation of prompt searches in LLP scenario
 - Search for natural and split supersymmetry in proton-proton collisions at sqrt(s)=13TeV in final states with jets and missing transverse momentum, <u>JHEP 05 (2018) 025</u>
 - Search for pair production of second generation leptoquarks at sqrt(s)=13TeV, <u>CMS-PAS-EXO-17-003</u>

A Peek at CMS @ HL-LHC

- High-Luminosity LHC runs
 - 2026-2035 run period
 - Expect to collect 4.5/ab
- Significant upgrades planned for all CMS detectors
 - Address radiation damage, and increase in trigger latency and data rates
 - Extension of detector coverage to improve particle identification
 - New detectors to help cope with increased number of concurrent collisions (pileup)
- Personal choice of two topics
 - Muon upgrade <u>CERN-LHCC-2017-012</u>
 - MIP Timing detector CERN-LHCC-2017-027



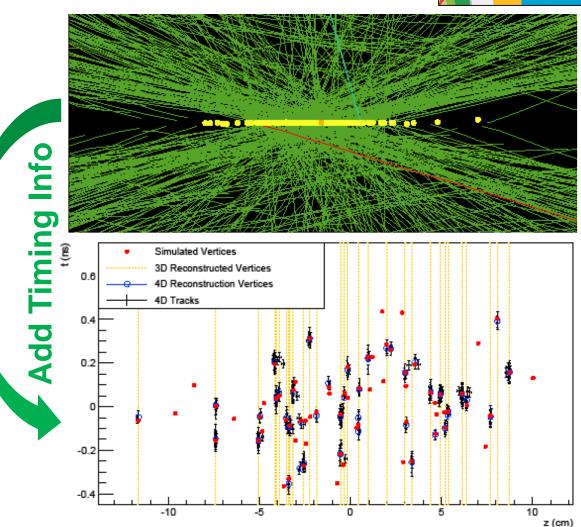
Additional muon layers in forward region allow for fit without PV constraint

Impact of Timing Measurement

- The MIP Timing Detector (MTD) is expected to provide vertex timing with 30ps resolution
 - Allows for 4-dimensional reconstruction of vertices, reducing impact of pileup
 - Vertex density in HL-LHC will be 2/mm, vs. 0.3/mm in current run; expect on average ~200 pp interactions per bunch crossing
- Timing information also allows for the definition of new variables
 - Can measure time-of-flight of long-lived particle between primary and secondary vertices, and reconstruct its mass from energy and momentum measurement of decay products
- Benchmark analysis: long-lived neutralino in GMSB
 - Neutralino produced in top squark decay; decays to Z boson and massless gravitino

Summary

- Important motivations to searches for displaced-object signatures E.g., complement traditional $E_{T}^{miss}+X$ searches for DM candidates
- Challenging analyses in which we look outside usual comfort zone
 - Vertex reconstruction far from beamline; disappearing or kinked tracks; non-pointing objects
- Excellent detectors (and smart analyzers) allow for investigation of exotic final states Alas, no sign of new physics beyond the SM, but stringent limits on many SM extensions
- Exciting times ahead, with a O(10) expected increase in data size by 2023
 - Moreover, CMS upgrades for HL-LHC will add capabilities that promise to play an important role in extending current reach


Additional Material

The Importance of Timing

- Precise timing information adds a new dimension to vertex reconstruction
 - Promises ability to distinguish individual pp interactions that occur within a bunch crossing
- Numbers of interest
 - Average number of pp interactions per bunch crossing at HL-LHC: 200
 - Time-spread among pp interactions: 150ps
 - Luminous region along beam: ~4.5cm RMS
 - Vertex density in HL-LHC: 2mm⁻¹
 - LHC: 0.3mm⁻¹
- While HGC provides timing info with 50ps resolution per cell, proposals are advanced for detectors that specifically measure track timing
 - ATLAS: High-Granularity Timing Detector (HGTD)
 - CMS: MIP Timing Detector (MTD)

