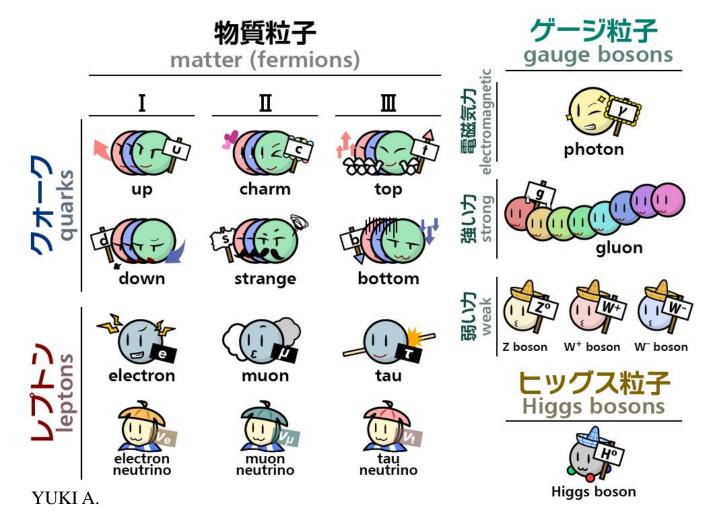


Hint for low scale seesaw from colliders

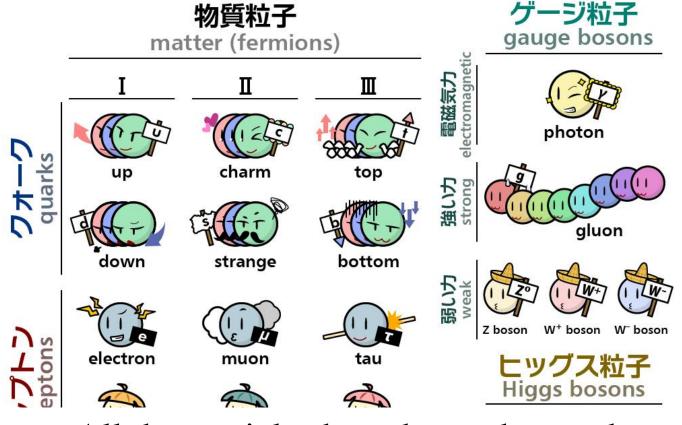
Hiroyuki Ishida (NCTS)

@New Physics with Displaced Vertices, NCTS, 2018/06/21

•Hints for new physics

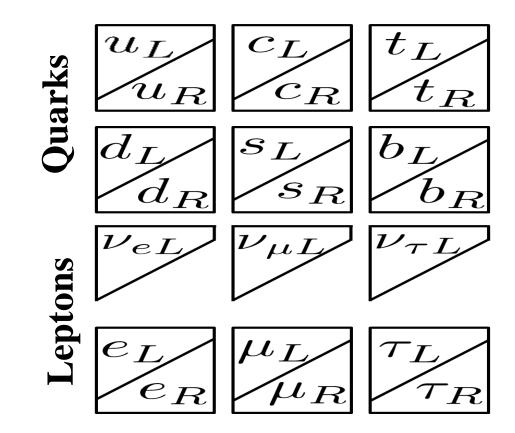

Taken from T2K web cite http://t2k-experiment.org/ja/

-Neutrinos are massive

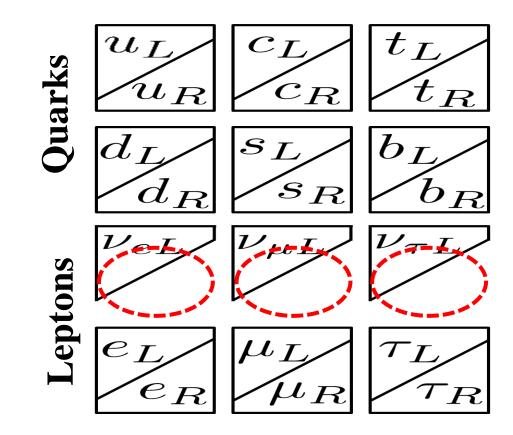

Taken from NASA web cite https://wmap.gsfc.nasa.gov/universe/uni_matter.html

-Dark matter is there -Matter anti-matter asymmetry needs to be created

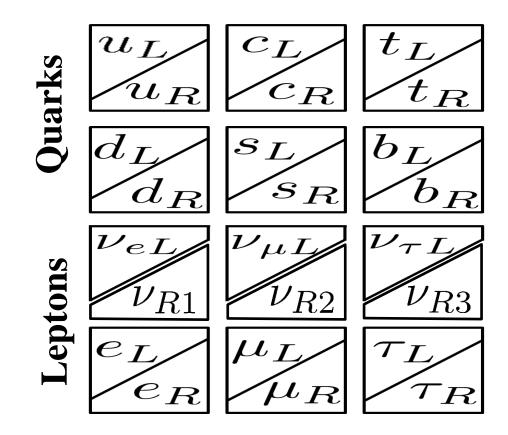
•Missing particles in the Standard Model



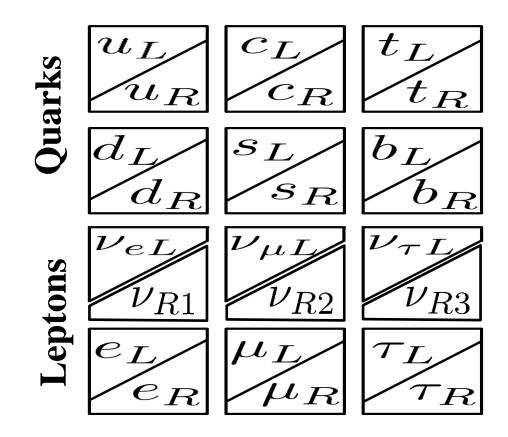
•Missing particles in the Standard Model



All the particles have been observed and the SM looks to be completed


•Missing particles in the Standard Model

•Missing particles in the Standard Model



•Missing particles in the Standard Model

Adding RH neutrinos looks natural!

•Missing particles in the Standard Model

Adding RH neutrinos looks natural! How many RH neutrinos are necessary?

•What we know from oscillation experiments -Flavor mixing angles

$$|U|_{3\sigma} = \begin{pmatrix} 0.799 \rightarrow 0.844 & 0.516 \rightarrow 0.582 & 0.141 \rightarrow 0.156 \\ 0.242 \rightarrow 0.494 & 0.467 \rightarrow 0.678 & 0.639 \rightarrow 0.774 \\ 0.284 \rightarrow 0.521 & 0.490 \rightarrow 0.695 & 0.615 \rightarrow 0.754 \end{pmatrix}$$

$$V_{\rm CKM} = \begin{pmatrix} 0.97434^{+0.00011}_{-0.00012} & 0.22506 \pm 0.00050 & 0.00357 \pm 0.00015 \\ 0.22492 \pm 0.00050 & 0.97351 \pm 0.00013 & 0.0411 \pm 0.0013 \\ 0.00875^{+0.00032}_{-0.00033} & 0.0403 \pm 0.0013 & 0.99915 \pm 0.00005 \end{pmatrix}$$
[PDG]

Larger mixing than quark sector

-Mass squared difference

 $\Delta m_{21}^2 = 7.4 \times 10^{-5} \text{eV}^2 \qquad \Delta m_{31}^2 = 2.494 \times 10^{-3} \text{eV}^2$

[NuFIT3.2 (2018)]

-(Dirac CP violating phase) $\delta \sim -\pi/2$

•What we know from oscillation experiments -Flavor mixing angles

$$\begin{aligned} &|U|_{3\sigma} = \begin{pmatrix} 0.799 \rightarrow 0.844 & 0.516 \rightarrow 0.582 & 0.141 \rightarrow 0.156 \\ 0.242 \rightarrow 0.494 & 0.467 \rightarrow 0.678 & 0.639 \rightarrow 0.774 \\ 0.284 \rightarrow 0.521 & 0.490 \rightarrow 0.695 & 0.615 \rightarrow 0.754 \end{pmatrix} \\ V_{\rm CKM} = \begin{pmatrix} 0.97434^{+0.00011}_{-0.00012} & 0.22506 \pm 0.00050 & 0.00357 \pm 0.00015 \\ 0.22492 \pm 0.00050 & 0.97351 \pm 0.00013 & 0.0411 \pm 0.0013 \\ 0.00875^{+0.00032}_{-0.00033} & 0.0403 \pm 0.0013 & 0.99915 \pm 0.00005 \end{pmatrix} \text{[PDG]} \end{aligned}$$

Larger mixing than quark sector

-Mass squared difference

$$\Delta m_{21}^2 = 7.4 \times 10^{-5} \text{eV}^2 \qquad \Delta m_{31}^2 = 2.494 \times 10^{-3} \text{eV}^2$$

At least, two mass scales are required!

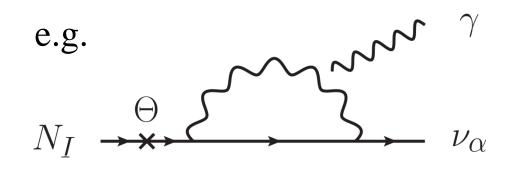
[INUF113.2 (2018)]

[Minkowski (1977);Yanagida(1979);Gell-Mann,Ramond,Slansky (1979); Glashow (1980);Mohapatra,Senjanovic(1980)]

•Usual way to obtain neutrino masses (type-I seesaw) -Adding RH neutrinos

$$\mathcal{L}_{\nu mass} = F_{\alpha I} \bar{L}_{\alpha} H \nu_{RI} + \text{h.c.} + \frac{M_M}{2} \overline{\nu_{RI}^c} \nu_{RI} \,.$$

*Dirac masses : $F_{\alpha I}\langle H\rangle$ *Majorana masses : M_M

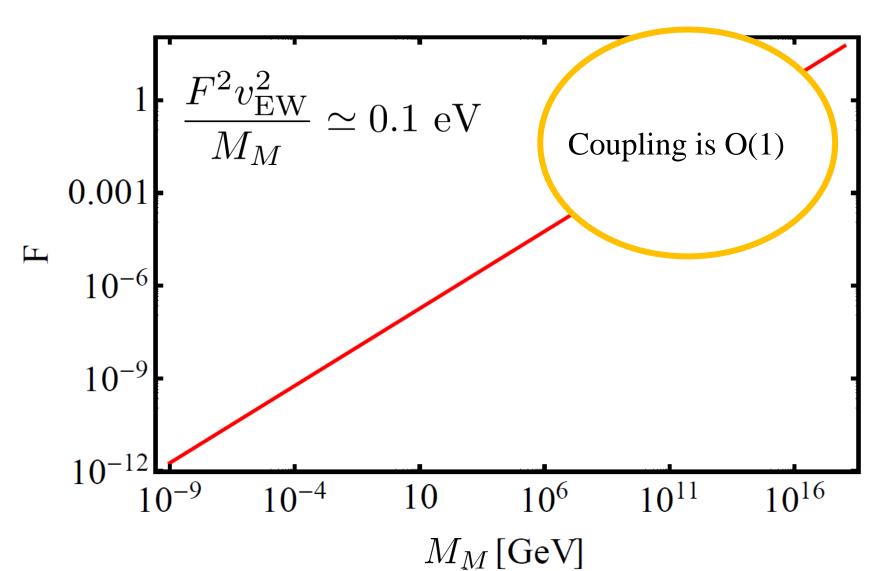

-Tiny neutrino masses can be realized by hierarchy

$$\hat{M} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} \xrightarrow{\text{diagonalization}} \begin{pmatrix} M_\nu & 0 \\ 0 & M_M \end{pmatrix}$$
where $M_\nu \simeq -M_D M_M^{-1} M_D^T$

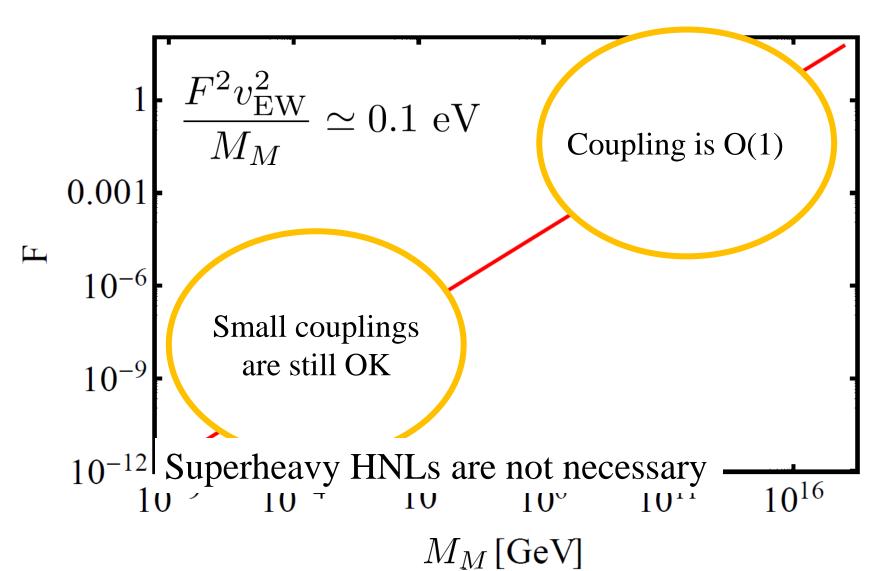
- Physical states of neutrinos
 - *Active neutrinos : $\nu_i = U_{\rm MNS}^{\dagger} \nu_{L\alpha} U_{\rm MNS}^{\dagger} \Theta \nu_{RI}^C$
 - *Heavy neutral leptons (HNL) : $N_I^C = \nu_{RI}^C + \Theta^{\dagger} \nu_{L\alpha}$

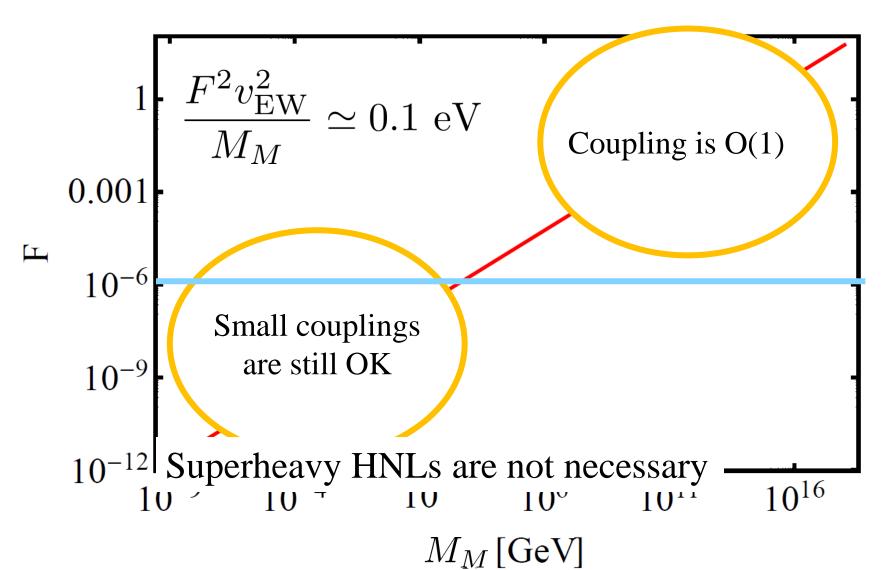
Note: sometimes it's called as sterile neutrinos but this is NOT MiniBooNE sterile neutrino!

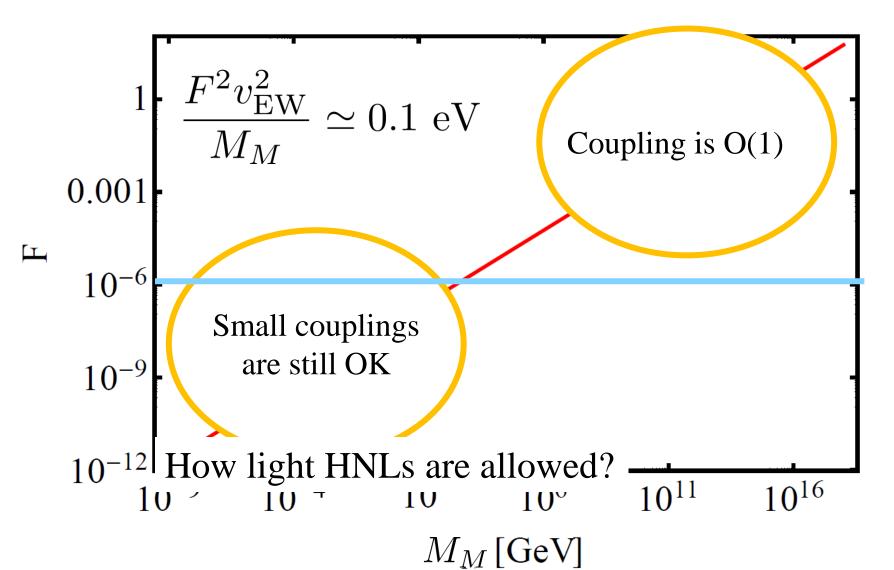
•Important parameter : $\Theta \equiv M_D/M_M \left(|\Theta|^2 = M_\nu/M_M \right)$ HNL can have gauge interaction through this mixing


•Required Majorana scale to realize seesaw

$$\frac{F^2 v_{\rm EW}^2}{M_M} \simeq 0.1 \ {\rm eV}$$


• Paquirad Maiorana coala to raaliza caacaw


• Paquirad Maiorana scala to raaliza saasaw


• Paniirad Maiarana coala ta raaliza caacam

• Paniirad Maiarana coala ta raaliza caacam

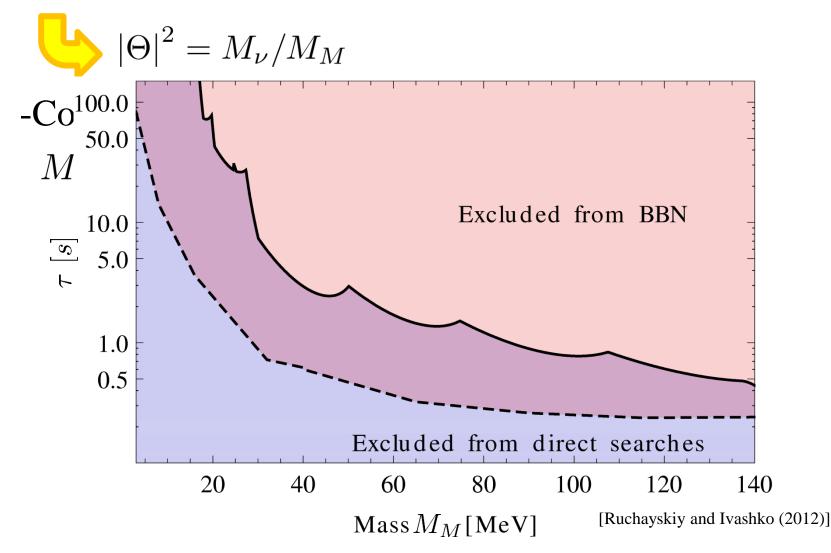
• Paquirad Maiorana coala to raaliza caacam

•Once HNLs contribute active v masses via seesaw

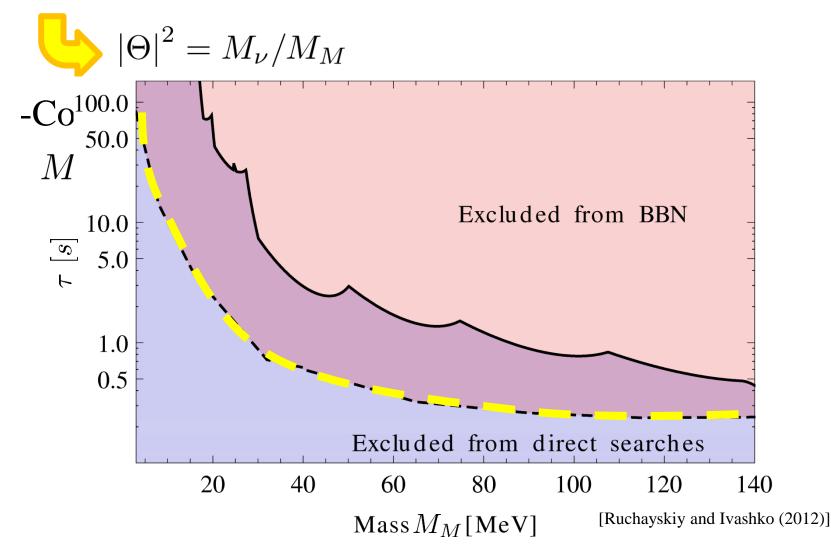
 $|\Theta|^2 = M_{\nu}/M_M$

-Constraint on lifetime [Ruchayskiy and Ivashko (2012)]

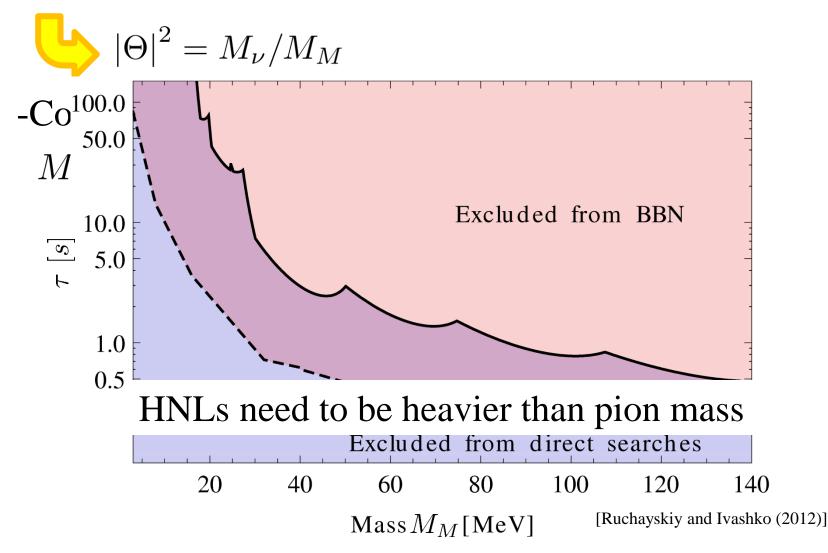
 $M_M < m_\pi \simeq 140 \text{ MeV}$


•Once HNLs contribute active v masses via seesaw

 $|\Theta|^2 = M_{\nu}/M_M$

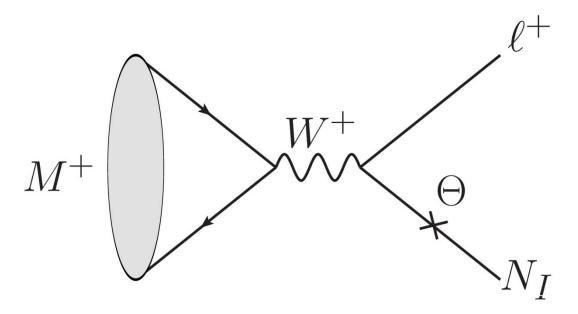

-Constraint on lifetime [Ruchayskiy and Ivashko (2012)]

 $M_M < m_{\pi} \simeq 140 \text{ MeV}$ $|\Theta|^2 \longrightarrow \text{ lifetime}$ detectability $\bigoplus \qquad \nu_e \qquad \nu_e$


•Once HNLs contribute active v masses via seesaw

•Once HNLs contribute active v masses via seesaw

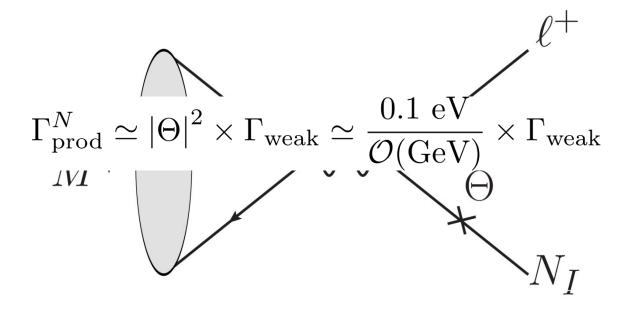
•Once HNLs contribute active v masses via seesaw


•Testability of HNL

Center mass energy of LHC: 10^4 GeV Direct production is impossible when $M_M \sim 10^{15}$ GeV

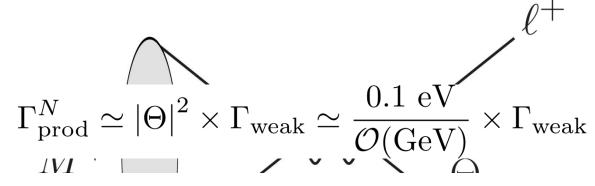
•Testability of HNL

Center mass energy of LHC: 10^4 GeV Direct production is impossible when $M_M \sim 10^{15}$ GeV


If $M_M < M_{\rm meson}$

•Testability of HNL

Center mass energy of LHC: 10^4 GeV Direct production is impossible when $M_M \sim 10^{15}$ GeV


If $M_M < M_{\rm meson}$

•Testability of HNL

Center mass energy of LHC: 10^4 GeV Direct production is impossible when $M_M \sim 10^{15} \text{ GeV}$

If $M_M < M_{\rm meson}$

Hints of low scale seesaw can be got by high intensity experiments!! Contents

•Today, I would like to focus on...

*LNV B decay at future collider [Asaka and H.I. (2016)]

*LNV B decay at future B experiments [Cvetič and Kim (2017)]

*Displaced vertices search at future LHCb

[Antusch, Cazzato, and Fischer (2017)]

*Displaced vertices search at LHC [Giovanna, Helo, and Hirsch, arXiv:1806.05191] Contents

•Today, I would like to focus on...

*LNV B decay at future collider [Asaka and H.I. (2016)]

*LNV B decay at future B experiments [Cvetič and Kim (2017)]

*Displaced vertices search at future LHCb [Antusch, Cazzato, and Fischer (2017)]

In further discussions, Majorana mass and mixing angle are considered as independent parameters

• Generic feature of Yukawa coupling [Casas, Ibarra(2001)]

$$F_{\alpha I} = \frac{i}{\langle H \rangle} U D_{\nu}^{\frac{1}{2}} \Omega D_{N}^{\frac{1}{2}}$$

*
$$D_{N}^{\frac{1}{2}} = \operatorname{diag}\left(\sqrt{M_{2}}, \sqrt{M_{3}}\right)$$

* $D_{\nu}^{\frac{1}{2}} = \operatorname{diag}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \sqrt{m_{3}}\right)$
* $U = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{13}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\eta} \\ 1 \end{pmatrix}$
* $\Omega = \begin{pmatrix} 0 & 0 \\ \cos \omega & -\sin \omega \\ \xi \sin \omega & \xi \cos \omega \end{pmatrix}$ for N.H. $\Omega = \begin{pmatrix} \cos \omega & -\sin \omega \\ \xi \sin \omega & \xi \cos \omega \\ 0 & 0 \end{pmatrix}$ for I.H.

 ω is arbitrary complex, $\xi = \pm 1$

• Generic feature of Yukawa coupling [Casas, Ibarra(2001)]

$$F_{\alpha I} = \frac{i}{\langle H \rangle} U D_{\nu}^{\frac{1}{2}} \Omega D_{N}^{\frac{1}{2}}$$

*
$$D_N^{\frac{1}{2}} = \operatorname{diag}\left(\sqrt{M_2}, \sqrt{M_3}\right)$$

* $D_{\nu}^{\frac{1}{2}} = \operatorname{diag}\left(\sqrt{m_1}, \sqrt{m_2}, \sqrt{m_3}\right)$
* $U = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12}-s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12}-s_{23}s_{13}s_{12}e^{i\delta} & s_{13}c_{13} \\ s_{23}s_{12}-c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12}-c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\eta} \\ 1 \end{pmatrix}$
* $\Omega = \begin{pmatrix} 0 & 0 \\ \cos \omega & -\sin \omega \\ \xi \sin \omega & \xi \cos \omega \end{pmatrix}$ for N.H. $\Omega = \begin{pmatrix} \cos \omega & -\sin \omega \\ \xi \sin \omega & \xi \cos \omega \\ 0 & 0 \end{pmatrix}$ for I.H.

Independent of seesaw relation!

• Generic feature of Yukawa coupling [Casas, Ibarra(2001)]

$$\Omega = \begin{pmatrix} 0 & 0\\ \cos \omega & -\sin \omega\\ \xi \sin \omega & \xi \cos \omega \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0\\ 0 & \cos \operatorname{Re}\omega & -\sin \operatorname{Re}\omega\\ 0 & \xi \sin \operatorname{Re}\omega & \xi \cos \operatorname{Re}\omega \end{pmatrix} \begin{pmatrix} 0 & 0\\ \cosh \operatorname{Im}\omega & -i \sinh \operatorname{Im}\omega\\ i \sinh \operatorname{Im}\omega & \cosh \operatorname{Im}\omega \end{pmatrix}$$

Imaginary part can determine the magnitude of Yukawa coupling

Because,
$$\sinh \operatorname{Im}\omega = \frac{1}{2} \left(\exp \left[\operatorname{Im}\omega \right] - \exp \left[-\operatorname{Im}\omega \right] \right)$$

 $\cosh \operatorname{Im}\omega = \frac{1}{2} \left(\exp \left[\operatorname{Im}\omega \right] + \exp \left[-\operatorname{Im}\omega \right] \right)$

Enhancement of Yukawa coupling (mixing angle) can be realized by Imω!

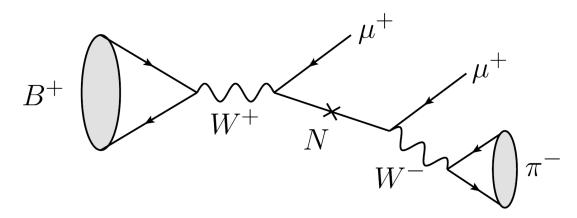
• Generic feature of Yukawa coupling [Casas, Ibarra(2001)]

$$\Omega = \begin{pmatrix} 0 & 0\\ \cos \omega & -\sin \omega\\ \xi \sin \omega & \xi \cos \omega \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0\\ 0 & \cos \operatorname{Re}\omega & -\sin \operatorname{Re}\omega\\ 0 & \xi \sin \operatorname{Re}\omega & \xi \cos \operatorname{Re}\omega \end{pmatrix} \begin{pmatrix} 0 & 0\\ \cosh \operatorname{Im}\omega & -i \sinh \operatorname{Im}\omega\\ i \sinh \operatorname{Im}\omega & \cosh \operatorname{Im}\omega \end{pmatrix}$$

Imaginary part can determine the magnitude of Yukawa coupling

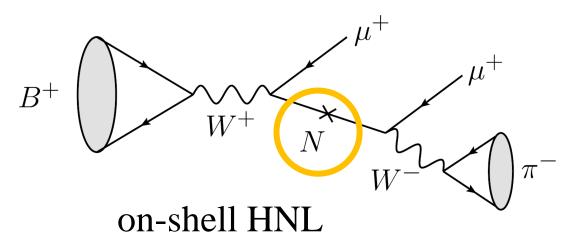
Because,
$$\sinh \operatorname{Im}\omega = \frac{1}{2} \left(\exp \left[\operatorname{Im}\omega \right] - \exp \left[-\operatorname{Im}\omega \right] \right)$$

 $\cosh \operatorname{Im}\omega = \frac{1}{2} \left(\exp \left[\operatorname{Im}\omega \right] + \exp \left[-\operatorname{Im}\omega \right] \right)$

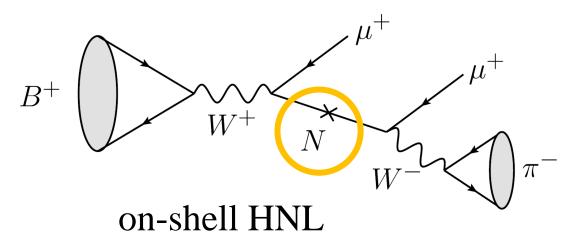

Just for simplicity, we analyze the extended SM by "a" RHv

LNV B decay at future collider

[Asaka and H.I. (2016)]


LNV B decay at future collider [Asaka and H.I. (2016)]

•Focusing process


LNV B decay at future collider [Asaka and H.I. (2016)]

•Focusing process

LNV B decay at future collider [Asaka and H.I. (2016)]

•Focusing process

*Considerable mass range

$$m_{\pi} - m_{\mu} < M_M < m_B - m_{\mu}$$

$$(m_B \simeq 5.38 \text{ GeV})$$

*Assumption

$$\Theta_{\mu} \neq 0 \text{ and } \Theta_{e}, \Theta_{\tau} = 0$$

- •Focusing future collider: Belle II and FCC-ee@Z-pole
 - -Difference
 - *Process $\Upsilon(4S)$ $B^+ \rightarrow \mu^+ + N \rightarrow \mu^+ + \mu^+ + \pi^-$ @Belle II

- •Focusing future collider: Belle II and FCC-ee@Z-pole
 - -Difference
 - *Process
 - $\Upsilon(4S)$ $B^+ \rightarrow \mu^+ + N \rightarrow \mu^+ + \mu^+ + \pi^-$ @Belle II given by experiment ($N_B = 5 \times 10^{10}$ with 50 ab⁻¹)

•Focusing future collider: Belle II and FCC-ee@Z-pole -Difference

*Process

 $\Upsilon(4S) Effective detector length: ℓ_{det} = 1.5 m$ B⁺→ μ⁺ + N → μ⁺ + μ⁺ + π⁻ @Belle IIgiven by experiment (N_B = 5 × 10¹⁰ with 50 ab⁻¹)

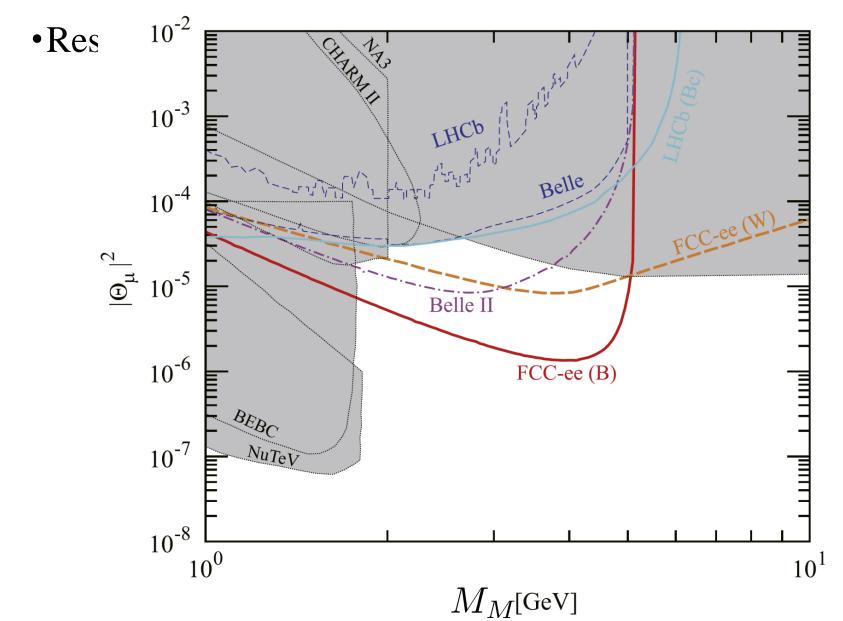
•Focusing future collider: Belle II and FCC-ee@Z-pole -Difference

*Process

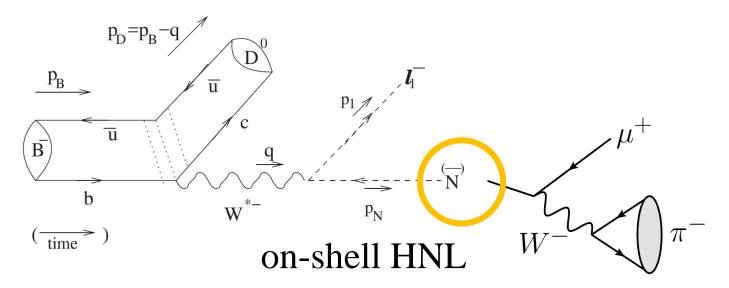
$$\begin{split} &\Upsilon(4S) & \text{Effective detector length: } \ell_{\text{det}} = 1.5 \text{ m} \\ & \swarrow B^+ \to \mu^+ + N \to \mu^+ + \mu^+ + \pi^- \text{ @Belle II} \\ & \text{given by experiment } (N_B = 5 \times 10^{10} \text{ with } 50 \text{ ab}^{-1}) \\ & Z \\ & \searrow B^+ \to \mu^+ + N \to \mu^+ + \mu^+ + \pi^- \text{ @FCC-ee} \\ & \left(N_{B^+} = N_Z \times \text{Br}(Z \to b\bar{b}) \times f_u\right) \end{split}$$

•Focusing future collider: Belle II and FCC-ee@Z-pole -Difference

*Process $\Upsilon(4S)$ Effective detector length: $\ell_{det} = 1.5 \text{ m}$ $(B^+) \rightarrow \mu^+ + N \rightarrow \mu^+ + \mu^+ + \pi^-$ @Belle II given by experiment ($N_B = 5 \times 10^{10}$ with 50 ab⁻¹) Z $B^+ \to \mu^+ + N \to \mu^+ + \mu^+ + \pi^-$ @FCC-ee $(N_{B^+} = N_Z \times \operatorname{Br}(Z \to b\bar{b}) \times f_u)$ given by experiment fraction of B^+ from \bar{b}


•Focusing future collider: Belle II and FCC-ee@Z-pole -Difference

*Process


 $\Upsilon(4S)$ Effective detector length: $\ell_{det} = 1.5 \text{ m}$ $(B^+) \rightarrow \mu^+ + N \rightarrow \mu^+ + \mu^+ + \pi^-$ @Belle II given by experiment ($N_B = 5 \times 10^{10}$ with 50 ab⁻¹) Effective detector length: $\ell_{det} = 2 \text{ m}$ Z $B^+ \to \mu^+ + N \to \mu^+ + \mu^+ + \pi^-$ @FCC-ee $(N_{B^+} = N_Z \times \operatorname{Br}(Z \to b\bar{b}) \times f_u)$ $(N_B = 6.2 \times 10^{-2} N_Z \text{ with } N_Z = 10^{13})$ 16

•Result

LNV B decay at future collider [Asaka and H.I. (2016)]

- LNV B decay at future B experiments [Cvetič and Kim (2017)]
 - •Focusing process (in addition to $B^+ \to \mu^+ \mu^+ \pi^-$)

*Considerable mass range

$$m_{\pi} - m_{\mu} < M_M < m_B - m_{\mu} \text{ or}$$

$$m_{\pi} - m_{\mu} < M_M < m_B - m_D^{(*)} - m_{\mu}$$
*Assumption
$$(m_D \simeq 1.87 \text{ GeV}, m_D^* \simeq 2.01 \text{ GeV})$$

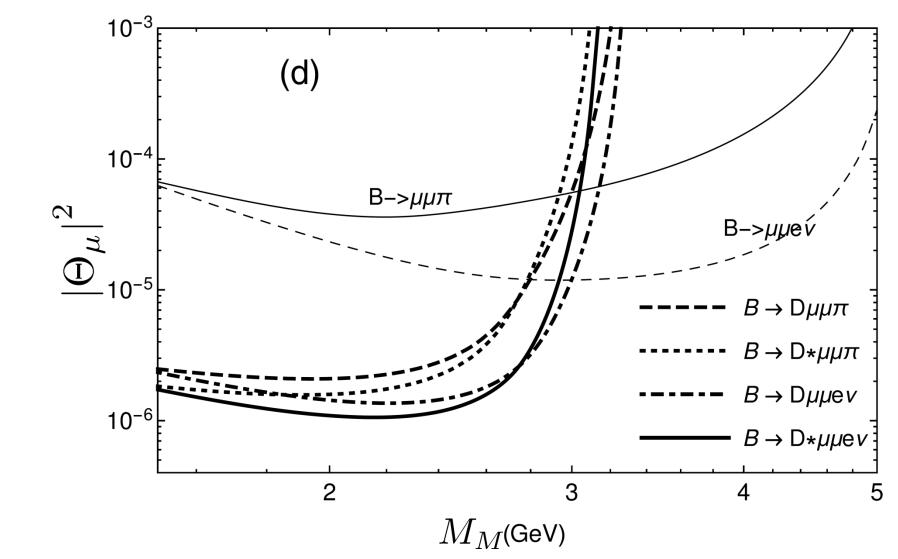
$$\Theta_{\mu} \neq 0 \text{ and } \Theta_e, \Theta_{\tau} = 0$$
19

- •Focusing experiments: Belle II and LHCb
 - -Difference
 - *Process
 - $\Upsilon(4S)$ $B^+ \rightarrow$ interested processes @Belle II given by experiment ($N_B = 5 \times 10^{10}$ with 50 ab⁻¹)

- •Focusing experiments: Belle II and LHCb
 - -Difference
 - *Process

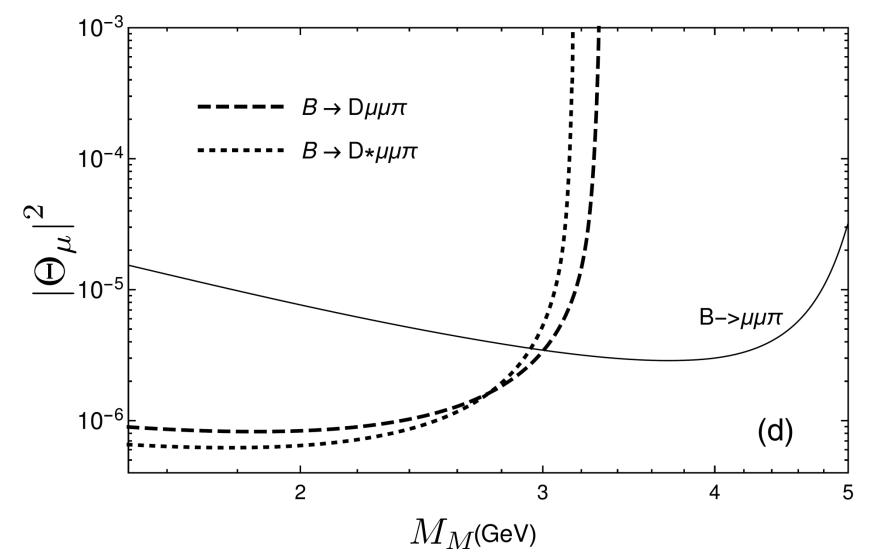
- •Focusing experiments: Belle II and LHCb
 - -Difference
 - *Process

 $\Upsilon(4S) \qquad \text{Effective detector length: } \ell_{det} = 1 \text{ m}$ $(B^+) \rightarrow \text{interested processes @Belle II}$ given by experiment ($N_B = 5 \times 10^{10} \text{ with } 50 \text{ ab}^{-1}$) pp $(B^+) \rightarrow \text{interested processes @LHCb}$


given by experiment ($N_B = 4.8 \times 10^{12}$ with private communication) 20

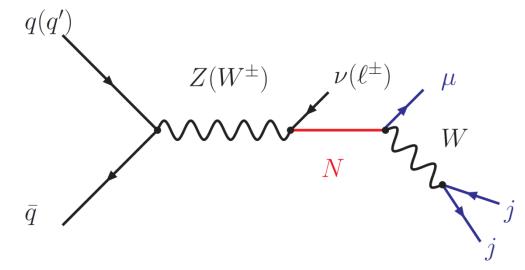
- •Focusing experiments: Belle II and LHCb
 - -Difference
 - *Process

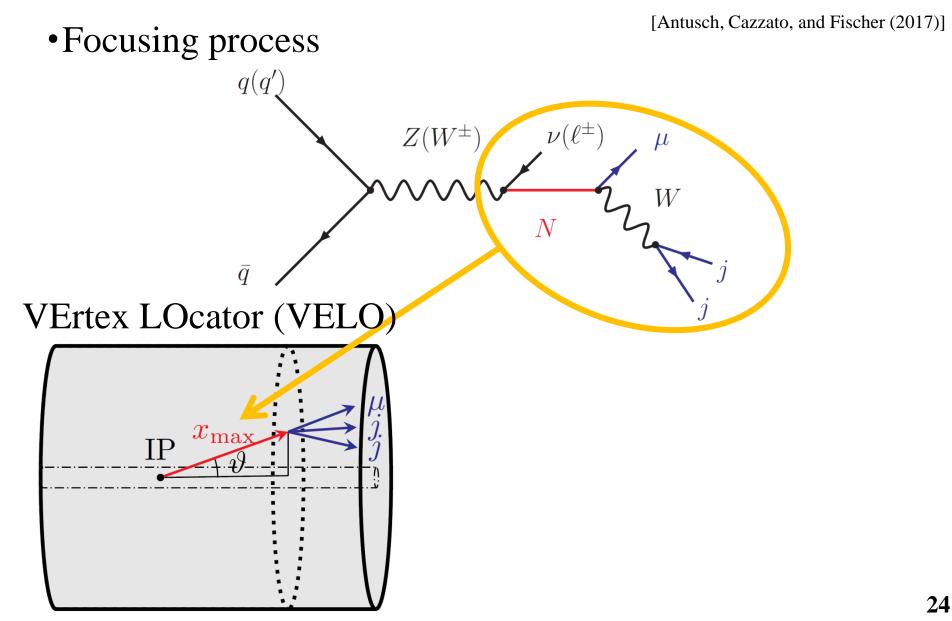
 $\Upsilon(4S)$ Effective detector length: $\ell_{det} = 1 \text{ m}$ → interested processes @Belle II given by experiment ($N_B = 5 \times 10^{10}$ with 50 ab⁻¹) ppEffective detector length: $\ell_{det} = 2.3 \text{ m}$ \rightarrow interested processes @LHCb given by experiment ($N_B = 4.8 \times 10^{12}$ with private communication) 20


LNV B decay at future B experiments [Cvetič and Kim (2017)]

•Result-1 (Belle II sensitivity)

LNV B decay at future B experiments [Cvetič and Kim (2017)]

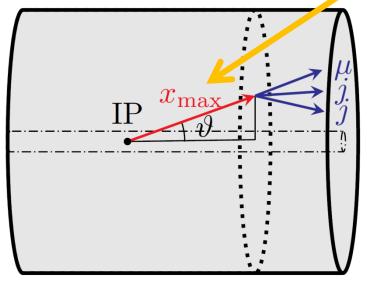

•Result-2 (LHCb sensitivity)



[Antusch, Cazzato, and Fischer (2017)]

[Antusch, Cazzato, and Fischer (2017)]

•Focusing process (NOT B decays!)

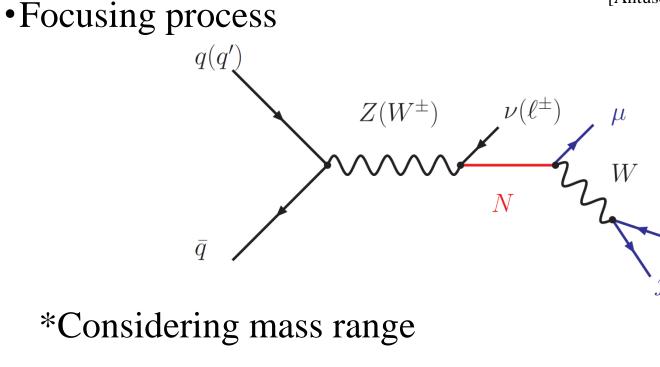

[Antusch, Cazzato, and Fischer (2017)]

VErtex LOcator (VELO)

 \bar{q}

•Focusing process

q(q)



Maximal and minimal displacement $x_{\max}(\vartheta) = \begin{cases} \frac{z_{\max}}{\cos(\vartheta)} & \text{if } 0 \le \vartheta \le \arctan(r_{\max}/z_{\max}) \\ \frac{r_{\max}}{\sin(\vartheta)} & \text{if } \arctan(r_{\max}/z_{\max}) \le \vartheta < \frac{\pi}{2} \end{cases}$ $x_{\min}(\vartheta) = \begin{cases} \frac{r_{\min}}{\sin(\vartheta)} & \text{if } \arctan(r_{\min}/z_{\max}) \le \vartheta < \frac{\pi}{2} \\ \text{n.a.} & \text{otherwise} \end{cases}$ (*Z*:longitudinal, *T*:transverse)

N

24

[Antusch, Cazzato, and Fischer (2017)]

 $4.5 \text{ GeV} < M_M < 25 \text{ GeV}$

*Assumption

 $\Theta_{\mu} \neq 0$ and $\Theta_{e}, \Theta_{\tau} = 0$

•Constraints to see signal

[Antusch, Cazzato, and Fischer (2017)]

- -Event cuts
 - $N(\mu) = 1$ and N(j) > 0
 - $2 < \eta(f) < 5, f = \mu, j$
 - $P_t(\mu) > 12 \text{ GeV}$
 - $M[\mu jj] > 4.5 \text{ GeV}$ $M_M < 4.5 \text{ GeV}$

and, $\vartheta[\mu j j] < 0.34$ due to geometric acceptance

•Constraints to see signal

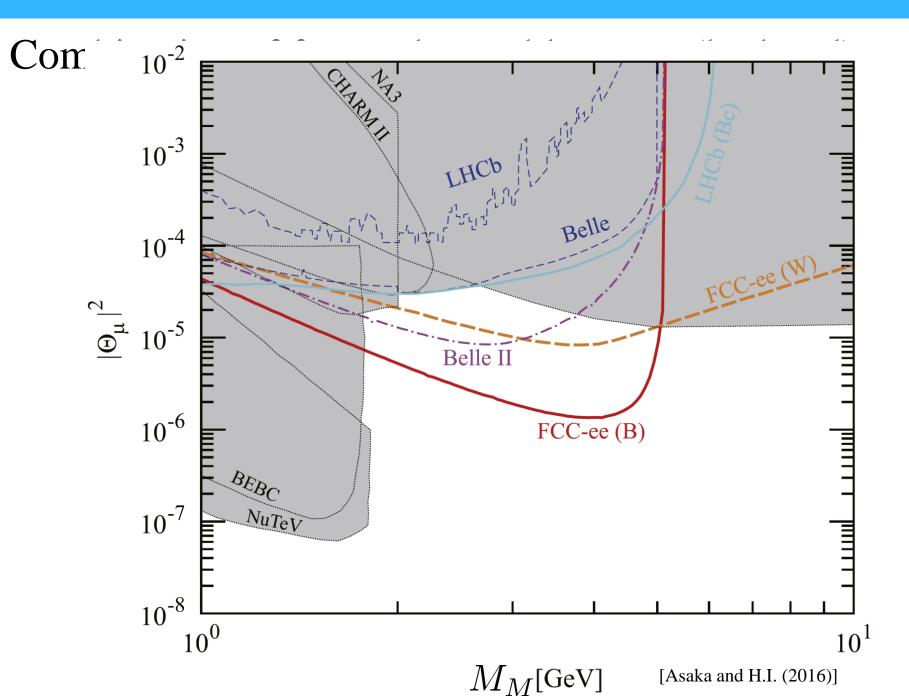
[Antusch, Cazzato, and Fischer (2017)]

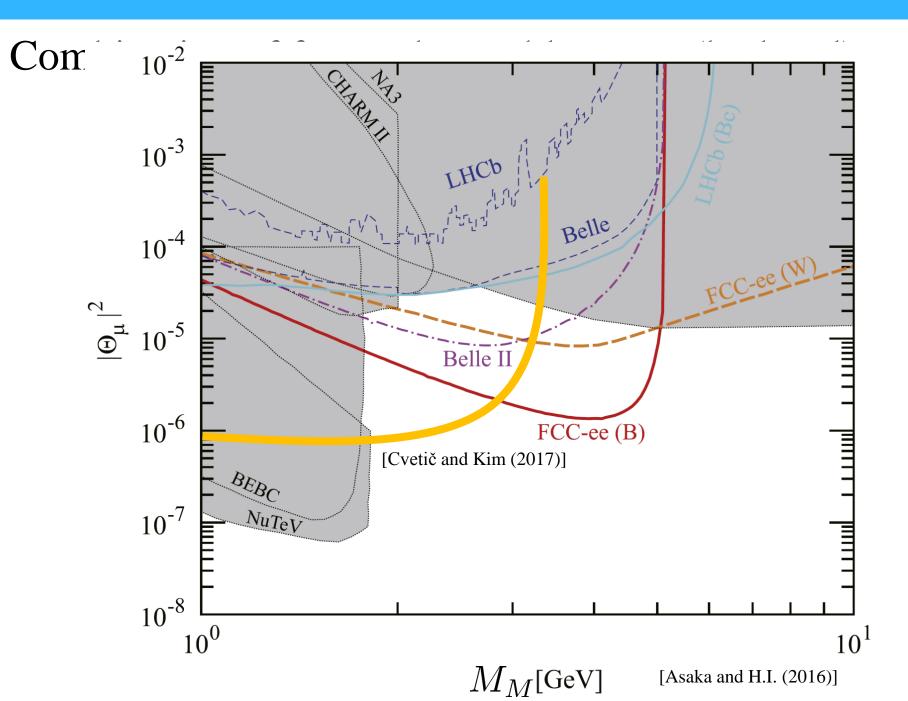
- -Event cuts
 - $N(\mu) = 1$ and N(j) > 0
 - $2 < \eta(f) < 5, f = \mu, j$
 - $P_t(\mu) > 12 \text{ GeV}$
 - $M[\mu jj] > 4.5 \text{ GeV}$ $M_M < 4.5 \text{ GeV}$

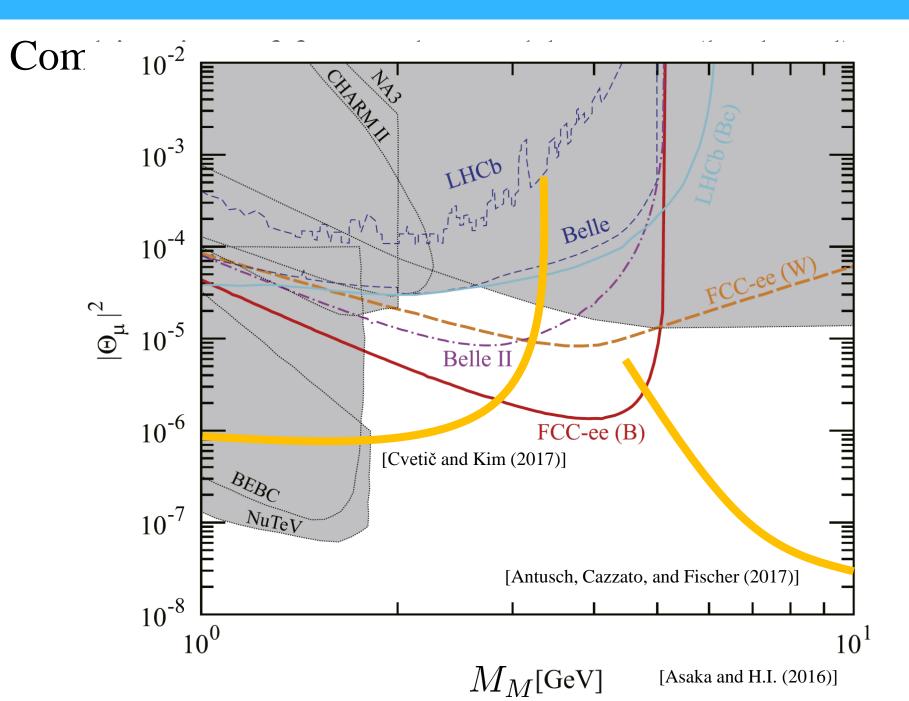
and, $\vartheta[\mu j j] < 0.34$ due to geometric acceptance

-Requirement to decay point of NHL

*Decay inside the VELO $z_{\rm max} = 40 \text{ cm}$


*Decay inside the volume $z_{\text{max}} = 2 \text{ m}$


[Antusch, Cazzato, and Fischer (2017)]


•Future prospects

[Antusch, Cazzato, and Fischer (2017)] •Future prospects 10^{-3} --- Belle ---- LHCb prompt 5 fb^{-1} 10 DELPHI ---- LHCb dv run 2 380 fb^{-1} --- LHCb dv run 5 10⁻⁵ $\overline{\mathbf{Z}}$ LHCb dv run 1 μ 10° 10^{-7} 10⁻⁸ 20 25 5 10 15 M_M [GeV]

Combination of future detectable range (by hand)

Conclusions

- •Low scale type-I seesaw
 - -Majorana scale cannot be determined gauge symmetry
 - -still available and phenomenologically interesting!

Conclusions

- •Low scale type-I seesaw
 - -Majorana scale cannot be determined gauge symmetry
 - -still available and phenomenologically interesting!
- •Detectability of HNL at collider
 - -Meson decays at Belle II, LHCb, and FCC-ee
 - -Displaced vertex signal due to HNL decay

Conclusions

- •Low scale type-I seesaw
 - -Majorana scale cannot be determined gauge symmetry
 - -still available and phenomenologically interesting!
- •Detectability of HNL at collider
 - -Meson decays at Belle II, LHCb, and FCC-ee
 - -Displaced vertex signal due to HNL decay

Hope to find any hints for origin of neutrino mass at (near) future colliders!!

Thank you for your attention!