

Long-Lived Particle Experimental Signatures - Tracking in ATLAS and CMS

Shih-Chieh Hsu (University of Washington)

NCTS Displaced Vertex Physics Workshop Thursday, June 21 2018 Slide materials from Heather Russell, Claudia Gemme, Hide Otono

Long-lived particle - collider experimentalist's view

New long-lived particles are both theoretically and experimentally strongly motivated. See excellent talks in the Wednesday section!

a neutral particle that decays a macroscopic, *reconstructable* distance from the p - p interaction point.

a charged particle that decays as above, or is quasi- stable on the scale of the relevant detector.

Timing, ionization and "displacements" are the key ingredients. Despite the different signatures, BSM LLPs have one thing in common: they need dedicated tools!

This talk will focus on the Tracking Signature relevant for **Displaced Vertex**.

Background

Weak decay of heavy flavor

Material interactions

The experiments

JINST 3 (2008) S08003

ATLAS and CMS

	ATLAS	CMS
Magnetic field	2T solenoid + toroid (0.5T barrel, 1T endcap	4T solenoid + return yoke
Tracker	Si pixel, strips + TRT σ/p _T ≈5 • 10 ⁻⁴ p _T + 0.01	Si pixel, strips $\sigma/p_T \approx 1.5 \cdot 10^{-4} p_T + 0.005$
EM calorimeter	Pb + Lar σ/E≈10% / √E + 0.007 GeV	PbWO4 crystals σ/E≈3% / √E + 0.003 GeV
H calorimeter	Fe + scint. / Cu + Lar (10λ) σ/E≈50% / √E + 0.03 GeV	Brass + scint. (7λ+catcher) σ/E≈100% / √E + 0.05 GeV
Muon	σ/p _T ≈2% @ 50GeV to 10% @ 1TeV	σ/p _T ≈1% @ 50GeV to 10% @ 1TeV (DT/ CSC+Tracker)
Trigger	L1 + RoI-based HLT (L2+EF)	L1 + HLT (L2+L3)

Experimental signature

Experimental signature

LLP - Inner Tracking

Standard tracking in the ATLAS detector consists of

- Silicon seeded tracking seeds and creates tracks in the silicon detectors (pixels and SCT) and extends them out into the TRT
- TRT seeded tracking takes seeds in the TRT and extends them inwards towards the proton-proton interaction point

Disappearing or Kinked Tracks

arXiv:1712.02118

10

q

q

Charged LLPs that are not stable on the detector scale p

- Decay to a neutral stable particle and $\tilde{\chi}_1^0$ a SM particle
- Predicted by various SUSY scenarios where a chargino and a neutralize are^{\pm} nearly mass-degenerate

Disappearing or Kinked Tracks

Single or multi-track vertices with specialized large transverse impact parameter and secondary vertex reconstruction.

- Follow with jet reconstructions
- or simply displaced lepton pair.

11

Large Radius Tracking

ATL-PHYS-PUB-2017-014

- Uses the hits left over from standard tracking
- Like the first standard tracking pass, seeds tracks in the silicon subdetectors and extends them into the TRT
- Certain tracking parameters loosened

		Standard	Large radius
	Maximum d ₀ (mm)	10	300
	Maximum z ₀ (mm)	250	1500
	Maximum η	2.7	5
	Maximum shared silicon modules	1	2
	Minimum silicon hits	7	7
d silic	Minimum unshared silicon hits	6	5
	Seed extension	Combinatorial	Sequential

ATLAS EXPERIMENT Radius

UNIVERS

OFMASS ATLAS-CONF-2017-026

Significant improve on vertex reconstruction of ficiency with addition of large radius tracks

dE/dx: heavy stable charged particles

ATLAS

√s = 13 TeV

 LLP with a larger unit of charge than expected by SM particles Measured by the energy loss in the pixel subsystem d*E*/dx
 If lifetime is long enough, HSCP may look like slow muons.

Mass [GeV]

15

- Instantaneous luminosity: up to 7.5~10³⁴ cm⁻²s⁻¹ (ultimately)
- ✓ Average pileup: $<\mu>~ 140$ (baseline) > 200 (ultimately)
- Integrated luminosity: 3 ab^{-1} (baseline), ultimately up to 4 ab^{-1}
- ✓ Starting from 2026, 10+ years of operation

Lifetime: 10ps -10ns

- It is expected a decrease of acceptance due to the new layout.
 - mainly for short lifetime due to 4 hits requirements.

 $\widetilde{\chi}_{4}^{\pm} \widetilde{\chi}_{4}^{\mp}, \widetilde{\chi}_{4}^{\pm} \widetilde{\chi}_{4}^{0}$ production, tan $\beta = 5, \mu > 0$

Increase of acceptance is significant thanks to new full Silicon tracker (Inner Tracker)

R-hadron Decay Radius [mm]

CMS Heavy Stable Charged Particle

ATLAS-CONF-2017-026

20

Anomalously high dE/dx is measured by the Inner Tracker. The Outer Tracker provides a binary readout only but a High Ionization Flag is implemented to restore some sensitivity

- Dedicated tools have been developed to probe nonconventional long-lived particle signature
 - A playground to practice creative ideas
- More improvements are being developed for the HL-LHC
- To go beyond the current LHC experiments
 dedicated LLP experiments are clearly needed.

Backup

	LHCb
Magnetic field	Bending power of 4Tm
Tracker	Si strips + straw drift tubes σ/p _T ≈1 • 10 ⁻² p _T @200GeV
EM calorimeter	Pb + sci. pads (25X ₀) σ/E≈10% / √E + 0.01 GeV
H calorimeter	Fe + scint. (5.6λ) σ/E≈69% / √E + 0.09 GeV
Muon	Iron and MWPC
Trigger	L0 + HLT

