KK graviton as mediator for dark matter and cascade decays

Hyun Min Lee

Chung-Ang University, Korea

National Tsing Hua University, Taiwan

Outline

- Introduction
- Gravity-mediated dark matter
- KK graviton at LHC
- Graviton-radion interplay
- Conclusions

Dark matter from sky

rdinary Matter 4.9%

Dark Energy

68.3%

 Various evidences for dark matter from galaxy rotation curves, CMB, gravitational lensing, and large scale structure.

The origin of dark matter is a compelling question.

WIMP Paradigm

[Lee,Weinberg(1977)]

Weak interaction with 100GeV-1TeV mass:

$$\square \square \square \Omega_{\rm DM} h^2 = 0.1 \left(\frac{1 \, {\rm pb} \cdot c}{\langle \sigma_A v \rangle} \right)$$

Interplay of direct, indirect and collider detections!

Direct detection

No direct evidence for WIMP yet

Direct detection

Mass and interaction of WIMP have been strongly constrained.

DM mediators at LHC

Mediators & effective interactions for DM

Beyond EFT operators

- Dark matter (DM) X is a singlet with spin (0, 1/2, or 1).
- Mediator particle M of spin (0,1,2) couples to DM.

 Mediator particles have been discussed mainly from Higgs, axion(spin-0), and/or Z'(spin-1) portals.

[HML, M.Park, W. Park(2012); HML, M.Park, V. Sanz (2012,2013)]

What about spin-2 mediator for dark matter ?

Extra dimensions and branes

- Higgs field is localized on IR brane, with its mass kept small by the warped factor.
- Gravity becomes weak as graviton is localized on UV brane.

KK graviton

• Higher dimensional graviton is expanded as

$$h_{\alpha\beta}(x,\phi) = \sum_{n=0}^{\infty} h_{\alpha\beta}^{(n)}(x) \frac{\chi^{(n)}(\phi)}{\sqrt{r_c}}$$

$$h_{\alpha\beta}^{(0)}(x): \text{ massless graviton } \longrightarrow \text{ 4D gravity}$$

$$h_{\alpha\beta}^{(n\neq0)}(x): \text{ Kaluza-Klein gravitons } \longrightarrow \text{ Massive spin-2}$$

$$\mathcal{L} = -\frac{1}{\overline{M}_{Pl}}T^{\alpha\beta}(x)h_{\alpha\beta}^{(0)}(x) - \frac{1}{\Lambda_{\pi}}T^{\alpha\beta}(x)\sum_{n=1}^{\infty}h_{\alpha\beta}^{(n)}(x).$$

• KK graviton is localized on IR brane in RS model. KK masses: "discrete" $m_G = \frac{k}{M_P} x_G \Lambda$ $m_G \lesssim 3.83 \Lambda$ $x_G = 3.83$, first zero of $J_1(x_G)$ KK couplings depend on localization of matter fields.

Clockwork theory

Clockwork theory: nearest-neighbor interactions.

Nth clock gear moves least, most weakly coupled:

 ϕ_i = graviton: weak gravity Matter couplings depend on localization.

Bulk force + brane fields in warped extra dimension

Gravity-mediated dark matter

Higgs mass and KK graviton

 Bulk RS model (Model A): Higgs & top quark on IR brane; light fermions on UV brane; gauge fields in bulk.

Higgs/WIMP hierarchy:

 $\frac{m_H}{M_P}, \frac{m_X}{M_P} \sim e^{-ky_c} \ll 1.$

Flavors and strong bounds from dileptons favor bulk RS model.

KK graviton decays into hh, tt, WW, ZZ

[A. Falkowski & J. Kamenik, 1603.06980; J. Hewett, T. Rizzo, 1603.08250]

DM: composite state, Z_2 from global symmetry.

Pure dark QCD (SU(2)): spin-0(broad)& spin-2 are the lowest. [V. Sanz, 2016]

WIMP and KK graviton

• Gauge bulk model (Model B): dark matter on IR brane; gauge fields in bulk; others on UV brane.

[HML, M.Park, V. Sanz, 2013, 2014]

WIMP hierarchy:

 $\frac{m_X}{M_P} \sim e^{-ky_c} \ll 1.$

KK graviton has universal couplings to gauge fields and larger couplings to WIMP dark matter.

Direct annihilations

 Dark matter annihilates mainly into a pair of SM particles through KK graviton.

Model A: $SM=\gamma,g,W_L,Z_L,h(t,b)$ Model B: $SM=\gamma,g,W_T,Z_T$

• DM annihilates sizably into a photon pair.

Cascade annihilations

 Dark matter can annihilate into a pair of KK gravitons, each of which decays into SM particles.

• Light SM particles are boosted and "box-shaped".

$$r = \left(\frac{m_G}{m_{\rm DM}}\right)^2 \sim 1:$$
 narrow
 $\left(\frac{m_G}{m_G}\right)^2 \ll 1$

wide

DM relic density

S-channels (or Model B) need a larger KK graviton coupling.

Bounds from gamma-rays [HML, M.Park, V. Sanz (2014)]

 s-channel depends on DM spins: vector DM is strongly constrained by gamma-rays and anti-protons.

Fermi GeV-excess

[Daylan et al (2014)]

- Gamma-ray excess from galactic center at I-2GeV
- VDM annihilations, XX→bb or XX→GG→bbbb in cascade, could account for GeV excesses.

[HML, Park, Sanz, unpublished]

Bounds on boxes

• Narrow boxes: $r_i \sim 1$ Vector DM is most constrained.

$$(\sigma v)_{SS \to GG} \sim (1 - r_S)^{\frac{9}{2}}$$

$$(\sigma v)_{\chi\bar{\chi}\to GG} \sim (1-r_S)^{\frac{7}{2}}$$

$$(\sigma v)_{XX\to GG} \sim (1-r_S)^{\frac{1}{2}}$$

- Narrow boxes from vector DM with masses of 9-30 GeV are excluded in both Model A and B.
- Wide boxes: $r_i \ll 1$ Similar bounds for all spins of DM.

Direct detection

[A. Carrillo-Monteverde, Y. Kang, HML, M.Park, V. Sanz, 2018]

Effective DM-quarks interactions

Nuclear matrix elements: $\langle N(p_2) | i \mathcal{L}_{eff} | N(p_1) \rangle$

$$\mathcal{L}_{X-N} = \frac{3c_X c_q m_X^2 m_N^2}{m_G^2 \Lambda^2} \Big(F_{qT} - \frac{2}{9} F_{qS} \Big) (X^+ X^-) (N^+ N^-),$$
$$F_{qS} = \langle N | m_q \bar{q} q | N \rangle / m_N, \quad F_{qT} = \int_0^1 dx \, x (q(x) + \bar{q}(x)).$$

XENONIT + LHC

KK graviton at LHC

KK gravitons at LHC

Gluon fusion
 VBF(Model A)
 [Model B: all comparable]

 Associated (Model A)

Light KK graviton: m_G < 2m_X

- Model A: gg, YY (WW, ZZ, hh, gg, YY) below(above) WW threshold.
- Model B: gg, YY (gg, WW, ZZ, YY) below(above) WW threshold.

di-jet, di-photon

Visible decays: diphoton

C. Han et al, 2015

• Consider the production of KK graviton via gluon fusion, decaying into a pair of photons.

Heavy KK graviton: m_G > 2m_X

- Model A: gg, YY (XX,WW, ZZ, hh, gg) below(above) XX threshold.
- Model B: gg, YY (XX) below(above) XX threshold.

Mono- γ /jet/Z/W + MET

Graviton-radion interplay

Photon-jets

If intermediate particle decays into two photons within ECAL, photons are collimated and could mimic one photon.

KK graviton and light radion

 Radion is localized toward the IR brane, so it couples strongly to KK graviton.
 Dillon et al, 2016

Radion decays

- Radion decays into multiple photons (2 γ or $2\pi \rightarrow 4\gamma$).
- Decay length L is displaced in tracker or within ECAL.

Multi-step annihilations

• Dark matter can annihilate into a pair of KK gravitons, with cascade decays, $G \rightarrow rr$ and $r \rightarrow SM$ SM.

 Photons from 2-step cascade annihilations are shifted to low energies, mimicking muons or taus.

The origin of photons

C. Han et al, 2015; Dillon et al, 2016

cascade decays

direct decays

 Angular correlations between photons can be used to test (1) spin and CP; (2) direct or cascade decays.

> Parton-level cross-section at resonance rest-frame:

 $\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\cos\theta^*} \propto \begin{cases} 1+6\cos^2\theta^* + \cos^4\theta^* & \mathrm{in} \ (gg \to G \to \gamma\gamma), \\ 1-2\cos^2\theta^* + \cos^4\theta^* & \mathrm{in} \ (gg \to G \to r\,r \to 2\gamma_{\mathrm{jet}}), \\ 1 & \mathrm{in} \ (gg \to S \to \gamma\gamma), \end{cases}$

G: spin-2 vs S: spin-0 G: Direct vs Cascade decays

Spin-2 vs Spin-0 C. Han et al, 2015

- Direct photons from the decay of KK graviton are "more forward (30%)" (ENDCAP) and are more separated.
- Useful information from $N_{\text{jet}}, p_T^{\gamma\gamma}, E_T^{\text{miss}}, \cos \theta^*, \text{ etc.}$

Direct vs Cascade decays

Dillon et al, 2016

 Photon-jets coming from cascade decays are "more central" (BARREL), closer to scalar resonance (cf. photon-jets: 15% in ENDCAP).

Conclusions

- KK graviton can be portals to dark matter and new physics.
- KK graviton couplings depend on localization of SM particles in extra dimension. Large couplings to dark matter and/or universal couplings to gauge fields in RS-like models lead to distinct signals for DM and colliders.
- Cascade decays of KK graviton could lead to more smooth gamma-ray spectrum for dark matter signals and displaced signatures such as photon-jets at LHC.
- It would be worthwhile to study the couplings and spectrum of KK graviton in general warped geometry, such as linear dilaton background.

Backup

Light KK graviton

• In bulk RS: $m_G = x_G \tilde{\kappa} \Lambda$, $\tilde{\kappa} \equiv \frac{k}{M_P}$, $\Lambda = e^{-kL} M_P$, $(x_G = 3.83)$. $m_A = x_A \tilde{\kappa} \Lambda = 0.64 m_G$, $(x_A = 2.45)$.

• Brane Einstein term: $\Delta \mathcal{L}_{RS} = -\frac{1}{2}M_*^3\sqrt{-g_4}R_4\left[r_0\delta(y) + r_L\delta(y-L)\right]$

 $m_G \approx \frac{2ke^{-kL}}{\sqrt{kL}} = \frac{0.8m_A}{\sqrt{kL}}$ [H. Davoudiasl et al, 2003] [Falkowski et al & Hewett et al, 2016]

 $kr_L = 10 - 20$: KK graviton can be light for 3-4TeV KK gauge bosons, being consistent with direct searches and EWPD.

Wrong-sign kinetic term needs new physics.

[Dillon et al, 2016]

$$\mathcal{L}_{r} = -\frac{1}{2}N_{r}^{2}(\partial_{\mu}r)^{2}, \ N_{r}^{2} = \left(1 - 2kr_{L}\right)\left(1 + 2kr_{0}\right) > 0,$$
$$M_{P}^{2} = \frac{M_{*}^{3}}{2k}\left(1 + 2kr_{0} - e^{-2kL}(1 - 2kr_{L})\right) > 0.$$

Clockwork at LHC

• General warped geometry with dilaton:

$$S = \int d^5 x \sqrt{-g} \, \frac{M_5^3}{2} \, e^S \left(R + (\partial_M S)^2 + 4k^2 \right)$$
$$ds^2 = e^{\frac{4}{3}k|y|} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2); \ S = 2k|y|. \qquad -\Lambda_0 = \Lambda_\pi = 4kM_5^3.$$

 $M_P^2 = \frac{M_5^3}{3} L_5 e^{\frac{1}{3}k\pi R}.$

 $m_0 = 0$, $m_n^2 = k^2 + \frac{n^2}{R^2}$, n = 1, 2, 3, ...

Almost continuous diphoton resonances.

