

Gravitational Wave Cosmology 重力波宇宙学

Dawn is Arriving! –
 黎明即将到来!

Misao Sasaki 佐佐木 節

Kavli IPMU, University of Tokyo YITP, Kyoto University LeCosPA, National Taiwan University 23 May, 2018

KAVLI IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Gravitational Waves?

What are Gravitational Waves (GW)?

- * GWs are ripples of spacetime, propagating at c, predicted by Einstein in 1916.
- * Emitted when energy distribution fluctuates violently.
- * GW propagates by stretching and contracting space perpendicular to the propagation direction (quadrupolar (spin=2) wave)

$$-\partial_t^2 + c^2 \Delta \left[h_{ij} = 0, \quad \partial^i h_{ij} = h_i^i = 0 \right]$$

(the only equation in this lecture)

quadrupolar wave

GWs penetrate everything!

Beginning of the Universe may be probed!

Where do GWs come from?

GWs from binary NS/BHs NS=Neutron Star BH=Black Hole

By observing emitted GWs, properties of strongly curved spacetime and matter under extreme conditions

Indirect evidence of GWs

Situation until Sept 2015 (approx. 100 yrs after Einstein)

decrease of orbital period due to GW emission in binary pulsars **(NS)** C ¢υ Cumulative period shift (s) -102 B (Mgan) -1520 Mass 25 30 21.2 Perfect agreement -35with GR prediction 1.32 1.34 1.36 0 -400 0.51.5 2 1 1975 1980 1985 1990 1995 2000 2005 Mass A (M_{Sun}) PSR B1913+16/Hulse-Taylor Binary PSR J0737-3039 : Kranmer et al. '06 **1993 Nobel Prize in Physics** 7

Direct Detection of **GW** Event! GW150914 * LIGO detected GWs from Binary BHs on 14 Sept, 2015 only two days after the machine started to operate very lucky! Selected for a Viewpoint in Physics week ending PRL 116, 061102 (2016) PHYSICAL REVIEW LETTERS 12 FEBRUARY 2016 Observation of Gravitational Waves from a Binary Black Hole Merger * each BH mass~30 M B. P. Abbon et al." (LIGO Scientific Collaboration and Virgo Collaboration) 2017 Nobel Prize in Physics! (Received 21 January 2016; published 11 February 2016) On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferom Observatory simultaneously observed a transient gravitational-wave signal * distance~1.2 G lyr (400 Mpc) frequency from 35 to 250 Hz with a peak guryitational-wave stra predicted by general relativity for the inspiral and merresulting single black hole. The signal was false alarm rate catimated to b energy emitted as GWs~3 M_o then 5.1er. The source lies: In the source frame, the ini- $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c$ erryitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger. DOI: 10.1103/PhysRevLett.110.061102 I. INTRODUCTION The discovery of the binary pulsar system PSR_B1913+16 10,000 x (super nova by Hulse and Taylor [20] and subsequent observations of In 1916, the year after the final formulation of the field its energy loss by Taylor and Weisberg [21] demonstrated equations of general relativity, Albert Einstein predicted the existence of gravitational waves. This discovery, explosion energy)! the existence of gravitational waves. He found that along with emerging astrophysical understanding [22]. the linearized weak-field equations had wave solutions:

What is LIGO?

LIGO=Laser Interferometric Gravitational wave Observatory

$$\frac{\delta L}{L} = 10^{-21} \Leftrightarrow \delta L = 4 \times 10^{-16} \text{ cm!}$$
size of neucleon ~ 10⁻¹³ cm

Principle of Interferometer

GWs from BBH, etc.

arm length oscillates when GWs pass through

detector sees fluctuating light

observed GW signal

11

Already 5(+1) events observed

Co-observation with Virgo(France-Italy)

"Sound" of GWs

GW150914 and GW151226

a bit about Japan

KAmioka GRAvitational wave detector

http://gwcenter.icrr.u-tokyo.ac.jp/en/

future GW detector network

The Advanced GW Detector Network~2020

angular reslution

 sustantial improvement in angular resolution by addition of Virgo: from 2 LIGO(2) to 2 LIGO+Virgo (3) detectors.

WHAT'S NEXT after BBHs?

Big News in last October

PHYSICAL REVIEW LETTERS

20 OCTOBER 2017

GW170817=GRB170817A

 γ -ray burst

LIGO-Virgo + Fermi simultaneously detected GWs and γ-ray from Binary NS merger

"Sound" of GWs and y-ray

dawn of multi-messenger astronomy 70 obs groups including 7 satellites

from Astronomy to Cosmology

EMWs and GWs

future projects

Space GW Observatories

Japan +? DECIGO

Deci-hertz Interferometer Gravitational wave Observatory arm length 1,000 km ~203x? freq:~ 0.1 Hz

Europe + US + ? LISA Laser Interferometer Space Antenna

arm length 5,000,000 km ~2035? freq:~10⁻³Hz

http://lisa.nasa.gov/

Pulsar Timing Array

Pulsar is an extremely accurate clock: pulse arrival times fructuate when GWs pass through freq: ~ 10⁻⁸Hz

period ~ 10 yr

HUNTING GRAVITATIONAL WAVES USING PULSARS

1 Gravitational waves from supermassive black-hole mergers in distant galaxies-subtly shift the position of Earth-

NEW MILLISECOND PULSARS

Gamma-ray Space Te escope in its hist year

3

2 Telescopes on Earth measure tiny differences in the arrival times of the radio bursts caused by the jostling

> 3 Measuring the effect on an array of pulsars enhances the chance of detecting the gravitational waves.

> > accuracy increases by using many pulsars

https://www.nature.com/news/2010/100112/full/463147a/box/1.html

Multi-band GW Astronomy

GW Cosmology

GWs from Inflation

quantum spacetime (tensor: spin 2) fluct'ns turn into Cosmological GW Background (CGWB)

- curvature (scalar) perturbations from inflation generate Cosmic Microwave Background (CMB) temperature fluctuations
- GW (tensor) perturbations also generate CMB temperature fluctuations

CMB temp fluctuations observed by Planck Satellite

but fluct'ns generated by GW are too small to be seen compared to those by curvature pertrurbations

-300 -200 -100 0 100 200 3 FKcmb

B-mode projects

LiteBIRD 2025 ~ 2030? http://litebird.jp/eng/

Lite (light) Satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection

Kavli IPMU is in!

EPIC 2030 (??) http://arxiv.org/abs/0906.1188

Experimental Probe of Inflationary Cosmology

GWs from Phase Transition

Electro-Weak transition may be strongly first order

Dawn of GW "Cosmology"

GWs penetrate everything!

Beginning of the Universe may be probed!

CMB B-mode polarization

GWs produce B-mode fluctuations in CMB polarization

GWs are an indespensable tool to explore the unknown Universe and discover new physics!

What will be discovered next?

Stay tuned!