Top quark precision with diphotons at the LHC

Energy Frontier in Particle Physics: LHC and Future Colliders, NTU, Taipei 2017. 9. 30

Hyung Do Kim (Seoul National University) with D Chway, R Dermisek, T H Jung (+W Cho, D Lee)

> PRL 117 (2016) PRD 95 (2017) arXiv:1710.yyyy

The LHC has discovered something quite unexpected : the Higgs boson and nothing else, confirming the Standard Model.

Moriond, March 29 2017 - p. 2

The LHC has discovered something quite unexpected : the Higgs boson and nothing else, confirming the Standard Model.

No low energy SUSY, no large extra dimensions, no new strong interactions.

For 125 GeV Higgs mass the Standard Model is a self-consistent weakly coupled effective field theory for all energies up to the quantum gravity scale $M_P \sim 10^{19}$ GeV

Moriond, March 29 2017 - p. 2

Hyung Do Kim

Marginal evidence (less than 2σ) for the SM vacuum metastability given uncertainties in relation between Monte-Carlo top mass and the top quark Yukawa coupling

Shaposhnikov

Moriond, March 29 2017 – p. 4

NTU 2017.9.30

Buttazzo et al, '13, '14:

vacuum is unstable at 2.8σ

vacuum is unstable at 1.3σ

Main uncertainty: top Yukawa coupling, relation between the MC mass and the top

Yukawa coupling allows for ± 1 GeV in M_{top} . Alekhin et al, Frixione et al.

Shaposhnikov

NTU 2017.9.30

Moriond, March 29 2017 - p. 5

Top quark mass

Glue to light signal of a new particle

PRL 117, 061801 (2016)

PHYSICAL REVIEW LETTERS

week ending 5 AUGUST 2016

Gluons to Diphotons via New Particles with Half the Signal's Invariant Mass

Dongjin Chway,^{1,*} Radovan Dermíšek,^{1,2,†} Tae Hyun Jung,^{1,‡} and Hyung Do Kim^{1,§} ¹Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea ²Physics Department, Indiana University, Bloomington, Indiana 47405, USA (Received 1 May 2016; published 5 August 2016)

Any new particle charged under $SU(3)_C$ and carrying an electric charge will leave an imprint in the diphoton invariant mass spectrum, as it can mediate the $gg \rightarrow \gamma\gamma$ process through loops. The combination of properties of loop functions, threshold resummation, and gluon parton distribution functions can result in a peaklike feature in the diphoton invariant mass around twice the mass of a given particle even if the particle is short lived, and thus it does not form a narrow bound state. Using a recent ATLAS analysis, we set upper limits on the combined $SU(3)_C$ and electric charge of new particles and indicate future prospects. We also discuss the possibility that the excess of events in the diphoton invariant mass spectrum around 750 GeV originates from loops of a particle with a mass of around 375 GeV.

DOI: 10.1103/PhysRevLett.117.061801

Model independent search strategy for colored and charged (new) particles in diphoton channel at LHC.

 $gg \rightarrow \gamma \gamma$

There is no tree level vertex in the Standard Model

 $q \bar{q}
ightarrow \gamma \gamma$ is the leading background for di-photon events

Any new particle which is produced from gluon fusion and decays into di-photons will be discovered easily from the invariant mass of the di-photon spectrum

$gg \to \gamma\gamma$

Scalar

 $C = N S_2 Q^2$ for N copies of the particles

Any new colored/charged particle will contribute to the loop of $gg \rightarrow \gamma\gamma$ Hyung Do Kim 9 NTU 2017. 9. 30

Near threshold $\frac{\alpha_s}{v}$ $(\frac{\alpha_s}{v})^2$ $(\frac{\alpha_s}{v})^n$ should be resummed should be resummed $gg \rightarrow \gamma \gamma$ Sommerfeld enhancement near $m_{\gamma\gamma} = 2m_X$ (resummation of ladder diagrams)

0000

Ŧ

0000

+

$$v_{\rm min} = \sqrt{\frac{\Gamma_X}{M_X}}~~{\rm acts}~{\rm as}~{\rm a}~{\rm regulator}~{\rm if}~{\rm X}~{\rm has}~{\rm a}~{\rm finite}~{\rm width}$$

Hyung Do Kim

0000

+

...

0000

quarkonium physics

$$E_b = \frac{1}{2} \frac{m_q}{2} C_F^2 \alpha_s^2$$

Hyung Do Kim

Threshold Resummation

EFT (Relativistic part of X particle is integrated out)

Quarkonium : narrow width approximation

formalism developed here works for small and large width at the same time

NTU 2017.9.30

l loop

arXiv:1612.05031

exclusion or expected exclusion

PRL 117 (2016) 061801

Hyung Do Kim

Precise top mass determination is very important

Top mass precision at LHC : Λ_{QCD}

Top mass precision at ILC : 20 MeV

Can we overcome the huddle with diphotons?

fat toponium

Hyung Do Kim

fat toponium

Binding energy $E_b = \frac{1}{2} \frac{m_t}{2} C_F^2 \alpha_s^2 = 1.5 \text{ GeV}$ $1.7 \sim 2 \text{ GeV at NLO}$

Decay width

 $\Gamma_{t\bar{t}} = 2\Gamma_t = 2.7 \text{ GeV}$

$$\Delta E_b = E_2 - E_1 \le \Gamma_{\eta_t} = 2\Gamma_t$$

higher states overlap (less than 20%)

we can call it toponium though not a single resonance

Top quark

Hyung Do Kim

 $\sigma(tt) \sim nb$

 10^{-3}

 $\sigma(\eta_t \to \gamma\gamma) \sim fb$

suppression from toponium formation

 $|\Psi(r=0)|^2 \sim \alpha_S^3$

from diphotons $\frac{\text{Br}(\eta_t \to \gamma \gamma)}{\text{Br}(\eta_t \to gg)} \sim \frac{\alpha^2}{\alpha_S^2}$ 10^{-2}

factor 5 enhancement from interference

need a large integrated luminosity

$$\frac{S}{\sqrt{B}} = 5 \to 600 f b^{-1} \sim 6 a b^{-1}$$

renormalon effects cancel out in the energy

$$\begin{split} E_{\rm stat} &= 2m_{\rm pole} \,+\, V_{\rm stat}(r) \\ m_{1S} &= m_{\rm pole} + \frac{1}{2}V(r) \qquad \text{free from } \Lambda_{\rm QCD} \end{split}$$

Hyung Do Kim

There is a hope for $\Delta m_t < 1 \; {
m GeV}$ from a single channel measurement

HE-LHC would be better (gluon pdf)

current best limit (direct measurement) $1.1 { m GeV} < \Gamma_t < 4.1 { m GeV}$ (CDF Run II, 68% CL)

Top Width

shape is sensitive to the width

Summary

Old study focused either on (narrow width) toponium production or continuum I loop computation

I loop computation fails at the threshold

Toponium production didn't include the interference with 5 light quarks

Fat toponium comes from resummation and matching

Top mass and top decay width can be measured from diphoton spectrum if we know the signal shape precisely (dip and peak)

can be easily hidden if we don't pay attention

Theory prediction needs to be improved