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ATLAS	&	CMS	(2016)

We have witnessed 
great victory of SM

Picture from web
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CMS Exotica Physics Group Summary – ICHEP, 2016!
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What’s next?



✦ Hundreds	of	data	points	
beautifully	fit	by	just	  
6	parameters	

✦ Todayʼs	topic:	

★ Inflation	(1st	half)	

★ +	DM	&	neutrinos	(2nd	half)

Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency-averaged
temperature spectrum computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters de-
termined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm, computed over 94 % of the sky. The best-fit base ⇤CDM theoreti-
cal spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown
in the lower panel. The error bars show ±1� uncertainties.

The large upward shift in Ase�2⌧ reflects the change in the abso-
lute calibration of the HFI. As noted in Sect. 2.3, the 2013 analy-
sis did not propagate an error on the Planck absolute calibration
through to cosmological parameters. Coincidentally, the changes
to the absolute calibration compensate for the downward change
in ⌧ and variations in the other cosmological parameters to keep
the parameter �8 largely unchanged from the 2013 value. This
will be important when we come to discuss possible tensions
between the amplitude of the matter fluctuations at low redshift
estimated from various astrophysical data sets and the Planck
CMB values for the base ⇤CDM cosmology (see Sect. 5.6).

(4) Likelihoods. Constructing a high-multipole likelihood for
Planck, particularly with T E and EE spectra, is complicated
and di�cult to check at the sub-� level against numerical
simulations because the simulations cannot model the fore-
grounds, noise properties, and low-level data processing of
the real Planck data to su�ciently high accuracy. Within the
Planck collaboration, we have tested the sensitivity of the re-
sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2016). The most highly developed of

them are the CamSpec and revised Plik pipelines. For the 2015
Planck papers, the Plik pipeline was chosen as the baseline.
Column 6 of Table 1 lists the cosmological parameters for base
⇤CDM determined from the Plik cross-half-mission likeli-
hood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations,
and multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasize that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on
the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
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Clear & present BSM 
new physics in the sky

Planck	(2016)

Planck Collaboration: Cosmological parameters

Table 4. Parameter 68 % confidence limits for the base⇤CDM model from Planck CMB power spectra, in combination with lensing
reconstruction (“lensing”) and external data (“ext”, BAO+JLA+H0). While we see no evidence that systematic e↵ects in polarization
are biasing parameters in the base ⇤CDM model, a conservative choice would be to use the parameter values listed in Column 3
(i.e., for TT+lowP+lensing). Nuisance parameters are not listed here for brevity, but can be found in the extensive tables on the
Planck Legacy Archive, http://pla.esac.esa.int/pla; however, the last three parameters listed here give a summary measure
of the total foreground amplitude (in µK2) at ` = 2000 for the three high-` temperature power spectra used by the likelihood.
In all cases the helium mass fraction used is predicted by BBN from the baryon abundance (posterior mean YP ⇡ 0.2453, with
theoretical uncertainties in the BBN predictions dominating over the Planck error on ⌦bh2). The Hubble constant is given in units
of km s�1 Mpc�1, while r⇤ is in Mpc and wavenumbers are in Mpc�1.

TT+lowP TT+lowP+lensing TT+lowP+lensing+ext TT,TE,EE+lowP TT,TE,EE+lowP+lensing TT,TE,EE+lowP+lensing+ext
Parameter 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits

⌦bh2 . . . . . . . . . . . 0.02222 ± 0.00023 0.02226 ± 0.00023 0.02227 ± 0.00020 0.02225 ± 0.00016 0.02226 ± 0.00016 0.02230 ± 0.00014

⌦ch2 . . . . . . . . . . . 0.1197 ± 0.0022 0.1186 ± 0.0020 0.1184 ± 0.0012 0.1198 ± 0.0015 0.1193 ± 0.0014 0.1188 ± 0.0010

100✓MC . . . . . . . . . 1.04085 ± 0.00047 1.04103 ± 0.00046 1.04106 ± 0.00041 1.04077 ± 0.00032 1.04087 ± 0.00032 1.04093 ± 0.00030

⌧ . . . . . . . . . . . . . 0.078 ± 0.019 0.066 ± 0.016 0.067 ± 0.013 0.079 ± 0.017 0.063 ± 0.014 0.066 ± 0.012

ln(1010As) . . . . . . . . 3.089 ± 0.036 3.062 ± 0.029 3.064 ± 0.024 3.094 ± 0.034 3.059 ± 0.025 3.064 ± 0.023

ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.9677 ± 0.0060 0.9681 ± 0.0044 0.9645 ± 0.0049 0.9653 ± 0.0048 0.9667 ± 0.0040

H0 . . . . . . . . . . . . 67.31 ± 0.96 67.81 ± 0.92 67.90 ± 0.55 67.27 ± 0.66 67.51 ± 0.64 67.74 ± 0.46

⌦⇤ . . . . . . . . . . . . 0.685 ± 0.013 0.692 ± 0.012 0.6935 ± 0.0072 0.6844 ± 0.0091 0.6879 ± 0.0087 0.6911 ± 0.0062

⌦m . . . . . . . . . . . . 0.315 ± 0.013 0.308 ± 0.012 0.3065 ± 0.0072 0.3156 ± 0.0091 0.3121 ± 0.0087 0.3089 ± 0.0062

⌦mh2 . . . . . . . . . . 0.1426 ± 0.0020 0.1415 ± 0.0019 0.1413 ± 0.0011 0.1427 ± 0.0014 0.1422 ± 0.0013 0.14170 ± 0.00097

⌦mh3 . . . . . . . . . . 0.09597 ± 0.00045 0.09591 ± 0.00045 0.09593 ± 0.00045 0.09601 ± 0.00029 0.09596 ± 0.00030 0.09598 ± 0.00029

�8 . . . . . . . . . . . . 0.829 ± 0.014 0.8149 ± 0.0093 0.8154 ± 0.0090 0.831 ± 0.013 0.8150 ± 0.0087 0.8159 ± 0.0086

�8⌦
0.5
m . . . . . . . . . . 0.466 ± 0.013 0.4521 ± 0.0088 0.4514 ± 0.0066 0.4668 ± 0.0098 0.4553 ± 0.0068 0.4535 ± 0.0059

�8⌦
0.25
m . . . . . . . . . 0.621 ± 0.013 0.6069 ± 0.0076 0.6066 ± 0.0070 0.623 ± 0.011 0.6091 ± 0.0067 0.6083 ± 0.0066

zre . . . . . . . . . . . . 9.9+1.8
�1.6 8.8+1.7

�1.4 8.9+1.3
�1.2 10.0+1.7

�1.5 8.5+1.4
�1.2 8.8+1.2

�1.1

109As . . . . . . . . . . 2.198+0.076
�0.085 2.139 ± 0.063 2.143 ± 0.051 2.207 ± 0.074 2.130 ± 0.053 2.142 ± 0.049

109Ase�2⌧ . . . . . . . . 1.880 ± 0.014 1.874 ± 0.013 1.873 ± 0.011 1.882 ± 0.012 1.878 ± 0.011 1.876 ± 0.011

Age/Gyr . . . . . . . . 13.813 ± 0.038 13.799 ± 0.038 13.796 ± 0.029 13.813 ± 0.026 13.807 ± 0.026 13.799 ± 0.021

z⇤ . . . . . . . . . . . . 1090.09 ± 0.42 1089.94 ± 0.42 1089.90 ± 0.30 1090.06 ± 0.30 1090.00 ± 0.29 1089.90 ± 0.23

r⇤ . . . . . . . . . . . . 144.61 ± 0.49 144.89 ± 0.44 144.93 ± 0.30 144.57 ± 0.32 144.71 ± 0.31 144.81 ± 0.24

100✓⇤ . . . . . . . . . . 1.04105 ± 0.00046 1.04122 ± 0.00045 1.04126 ± 0.00041 1.04096 ± 0.00032 1.04106 ± 0.00031 1.04112 ± 0.00029

zdrag . . . . . . . . . . . 1059.57 ± 0.46 1059.57 ± 0.47 1059.60 ± 0.44 1059.65 ± 0.31 1059.62 ± 0.31 1059.68 ± 0.29

rdrag . . . . . . . . . . . 147.33 ± 0.49 147.60 ± 0.43 147.63 ± 0.32 147.27 ± 0.31 147.41 ± 0.30 147.50 ± 0.24

kD . . . . . . . . . . . . 0.14050 ± 0.00052 0.14024 ± 0.00047 0.14022 ± 0.00042 0.14059 ± 0.00032 0.14044 ± 0.00032 0.14038 ± 0.00029

zeq . . . . . . . . . . . . 3393 ± 49 3365 ± 44 3361 ± 27 3395 ± 33 3382 ± 32 3371 ± 23

keq . . . . . . . . . . . . 0.01035 ± 0.00015 0.01027 ± 0.00014 0.010258 ± 0.000083 0.01036 ± 0.00010 0.010322 ± 0.000096 0.010288 ± 0.000071

100✓s,eq . . . . . . . . . 0.4502 ± 0.0047 0.4529 ± 0.0044 0.4533 ± 0.0026 0.4499 ± 0.0032 0.4512 ± 0.0031 0.4523 ± 0.0023

f 143
2000 . . . . . . . . . . . 29.9 ± 2.9 30.4 ± 2.9 30.3 ± 2.8 29.5 ± 2.7 30.2 ± 2.7 30.0 ± 2.7

f 143⇥217
2000 . . . . . . . . . 32.4 ± 2.1 32.8 ± 2.1 32.7 ± 2.0 32.2 ± 1.9 32.8 ± 1.9 32.6 ± 1.9

f 217
2000 . . . . . . . . . . . 106.0 ± 2.0 106.3 ± 2.0 106.2 ± 2.0 105.8 ± 1.9 106.2 ± 1.9 106.1 ± 1.8

Table 5. Constraints on 1-parameter extensions to the base⇤CDM model for combinations of Planck power spectra, Planck lensing,
and external data (BAO+JLA+H0, denoted “ext”). All limits and confidence regions quoted here are 95 %.

Parameter TT TT+lensing TT+lensing+ext TT,TE,EE TT,TE,EE+lensing TT,TE,EE+lensing+ext

⌦K . . . . . . . . . . . . . . �0.052+0.049
�0.055 �0.005+0.016

�0.017 �0.0001+0.0054
�0.0052 �0.040+0.038

�0.041 �0.004+0.015
�0.015 0.0008+0.0040

�0.0039
⌃m⌫ [eV] . . . . . . . . . . < 0.715 < 0.675 < 0.234 < 0.492 < 0.589 < 0.194
Ne↵ . . . . . . . . . . . . . . 3.13+0.64

�0.63 3.13+0.62
�0.61 3.15+0.41

�0.40 2.99+0.41
�0.39 2.94+0.38

�0.38 3.04+0.33
�0.33

YP . . . . . . . . . . . . . . . 0.252+0.041
�0.042 0.251+0.040

�0.039 0.251+0.035
�0.036 0.250+0.026

�0.027 0.247+0.026
�0.027 0.249+0.025

�0.026
dns/d ln k . . . . . . . . . . �0.008+0.016

�0.016 �0.003+0.015
�0.015 �0.003+0.015

�0.014 �0.006+0.014
�0.014 �0.002+0.013

�0.013 �0.002+0.013
�0.013

r0.002 . . . . . . . . . . . . . < 0.103 < 0.114 < 0.114 < 0.0987 < 0.112 < 0.113
w . . . . . . . . . . . . . . . �1.54+0.62

�0.50 �1.41+0.64
�0.56 �1.006+0.085

�0.091 �1.55+0.58
�0.48 �1.42+0.62

�0.56 �1.019+0.075
�0.080
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Further development in 
near future expected

✦ Cosmic	graviton	background:	

★ Indirectly	from	r	

✤ CMB	B-mode	immediately	(Recall	BICEP2	festival)	

★ Even	direct	observation	

✤ by	(Ultimate)	DECIGO	

✦ Handle	on	quantum	gravity

RESCEU APCosPA Summer School on Cosmology and Particle Astrophysics (August 3rd, 2014, Matsumoto)

Masaki Ando
(Dept. of Physics, Univ. of Tokyo / 
National Astronomical Observatory Japan)

DECIGO:  Space 
Gravitational-wave Antenna

from	DECIGO	website



Plan
1. Multiple-point	principle	(MPP) 
PREdicted	Higgs	mass	

2. Hill-climbing	Higgs	inflation	

3. Lower	bound:	r	>103 
even	with	Higgs-portal	DM



We are put on the edge

✦ On	the	edge	of	vacuum	instability	

✦ Triple	coincidence	at	MP:	

★ λ	〜	βλ	〜	m
2
bare	〜	0	

picture	from	web

Our	Universe

[Hamada,	Kawai,	KO,	2013]

Observational	fact 
+	Extrapolation	towards	Planck	scale

4

X X0 �X↵s �XM �Xpar �X+
µ �X�

µ �Xtru �O(↵2)
i �

O(↵↵s,↵
4
s)

↵s �
O(↵4

s)
q

Mcri
t 171.44 0.23 0.20 0.001 �0.36 0.17 �0.02 171.55�0.47

+1.04 171.43�0.36
+0.17 171.24�0.38

+0.19

log10 µ
cri
t 17.752 �0.051 0.083 0.007 0.007 �0.006 �0.002 17.783+0.062

�0.008 17.754+0.007
�0.006 17.751+0.007

�0.007

Mcri
H 129.30 �0.49 1.79 0.002 0.72 �0.33 0.04 129.06+0.95

�2.14 129.32+0.73
�0.33 129.72+0.76

�0.38

log10 µ
cri
H 18.512 �0.158 0.381 0.008 0.173 �0.082 0.008 18.495+0.226

�0.531 18.518+0.174
�0.082 18.602+0.184

�0.094
fMcri

t 171.64 0.23 0.20 0.001 �0.36 0.17 �0.02 171.74�0.46
+1.04 171.63�0.36

+0.17 171.43�0.37
+0.19

log10 µ̃
cri
t 21.442 �0.059 0.094 0.005 �0.083 0.022 0.002 21.485�0.085

+0.343 21.445�0.083
+0.022 21.441�0.072

+0.014
fMcri

H 128.90 �0.49 1.79 0.003 0.73 �0.34 0.04 128.67+0.95
�2.15 128.92+0.73

�0.34 129.32+0.76
�0.38

log10 µ̃
cri
H 22.209 �0.181 0.436 0.007 0.092 �0.062 0.013 22.201+0.146

�0.171 22.217+0.094
�0.062 22.312+0.113

�0.082

TABLE II: Coe�cients in Eq. (7) and central values with scale dependencies obtained upon switching o↵ the O(↵2) terms in
�i(µ) with i = W,Z,H, q, the O(↵↵s) and O(↵4

s) terms in �↵s(µ), and the O(↵4
s) terms in �q(µ) one at a time. The unit of

mass is taken to be GeV.

FIG. 1: RG evolution of �(µ) from µthr to µcri and beyond
in the (�,��) plane for default input values and matching
scale (red solid line), e↵ects of 1� (brown solid lines) and 3�
(blue solid lines) variation in MMC

t , theoretical uncertainty
due to the variation of ⇠ from 1/2 to 2 (upper and lower
black dashed lines with asterisks in the insets), and results
for Mcri

t (green dashed line) and Mcri
H (purple dashed line).

The 1� (brown ellipses) and 3� (blue ellipses) contours due to
the errors in MMC

t and MH are indicated for selected values
of µ. The insets in the upper right and lower left corners refer
to µ = MMC

t and µ = 1.55 ⇥ 1010 GeV, respectively.

over to Mt, which is actually the real part of the complex
pole position upon mass renormalization in the on-shell
scheme [25]. In view of the resonance property, a shift of
order �t = 2.00 GeV [2] would be plausible, which should
serve as a useful error estimate for the time being.

In conclusion, we performed a high-precision analy-
sis of the vacuum stability in the SM incorporating full
two-loop threshold corrections [5, 12–14], three-loop beta
functions [6], and O(↵4

s) corrections to the matching and
running of gs [7, 17] and yq [8, 18], and adopting two
gauge-independent approaches, one based on the criti-
cality criterion (2) for �(µ) [5] and one on a reorgani-
zation of Ve↵(H) so that its minimum is gauge inde-
pendent order by order [20]. For the Mt upper bound
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FIG. 2: Phase diagram of vacuum stability (light-green
shaded area), metastability, and instability (pink shaded area)
in the (MH ,Mt) plane, contours of �(µ0) = 0 for selected val-
ues of µ0 (purple dotted lines), contours of ��(µ0) = 0 for se-
lected values of µ0 (solid parabolalike lines) with uncertainties

due to 1� error in ↵(5)
s (MZ) (dashed and dot-dashed lines),

critical line of Eq. (2) (solid green line) with uncertainty due

to 1� error in ↵(5)
s (MZ) (orange shaded band), and critical

points with Mcri
t (lower red bullet) and Mcri

H (right red bul-
let). The present world average of (MMC

t ,MH) (upper left
red bullet) and its 1� (purple ellipse), 2� (brown ellipse), and
3� (blue ellipse) contours are marked for reference.

we thus obtained M cri
t = (171.44 ± 0.30+0.17

�0.36 ) GeV and
fM cri

t = (171.64±0.30+0.17
�0.36 ) GeV, respectively, where the

first errors are experimental, due the 1� variations in the
input parameters [2], and the second ones are theoretical,
due to the scale and truncation uncertainties. In want of
more specific information, we assume the individual error
sources to be independent and combine them quadrati-
cally to be on the conservative side. The 0.20 GeV dif-
ference between the central values of M cri

t and fM cri
t in-

dicates the scheme dependence, which arguably comes
as a third independent source of theoretical uncertainty.

Bednyakov	et	al.	(2015)
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-

19

Buttazzo	et	al.	(2013)



This situation is PREdiced
Standard model criticality prediction top mass 173 IL 5 GeV 

and Higgs mass 135 III 9 GeV 
C.D. Froggatt a, H.B. Nielsen b 

Phys.	Lett.	(1996)

(2012)

[Picture	from	HPNP2017]



MPP in a slide
✦ QFT	partition	function	Z	=	∫Dφ	eS[φ]		

★ Corresponds	to	canonical	formalism	in	statistical	mechanics	

✦ Micro-canonical	more	fundamental:	∫dβ	dE	(canonical)	→	(micro-canonical)	

★ Its	QFT	version	corresponds	to	integrating	over	all	couplings:	  
∫dΛ	∫dm2	∫dλ	….	

✦ In	statistical	mechanics,	co-existing	multiple-phases	lead	to	constant	T*	for	
wide	range	of	E.	

✦ In	QFT	language,	corresponds	to	co-existing	degenerate	vacua.	

✦ Couplings	automatically	selected	by	∫dΛ	∫dm2	∫dλ	…	to	realize	it.	

✦ Requirement	of	another	degenerate	vacuum	at	MP	lead	to	Higgs	mass	PREdiction.

Frogatt	&	Nielsen	(1996)
[Review	in	Hamada,	Kawai,	KO,	1501.04455]

The total energy is given first, and the temperature 
is determined as a result. 
Example:  Water molecules in a cylinder with a  
                  fixed pressure. 
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p 

water 

vapor 

E 

T 

water 

vapor 

water + vapor T* 

T is automatically tuned to T* for wide range of E. 

T corresponds to coupling constants in field theory. 

micro canonical               canonical 

F(750), We Miss You! Holger F. Bech Nielsen

Figure 6: Vapour, water and ice equilibrium in a bottle.

3.1 Model Reasons

It should be stressed that in specific model-pictures one can also derive the “Multiple (Crit-
icality) Point Principle” supposedly though it is only possible in models allowing the coupling
constants to depend on the future too. Ninomiya and one of us (HBN) “derived” it in the imagi-
nary action type of theory, and somewhat similarly in a nonlocal theory by Stillits [71, 72] and it
was done in babyuniverse theory, see works by Kawana et al. [15, 16, 17, 18].

4. The Difficulty of the Bound State

When we - as we now do - want to check if the “multiple point principle” is a true/valid law
of nature, we have the difficulty that an important role is played by a bound state with which the
vacuum, which we call “condensate vacuum”, is filled.

Fundamentally one cannot calculate completely perturbatively, when one calculates on a
bound state!
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Backup
Frogatt	&	Nielsen	(1996)

Micro-canonicalCanonical

Statistical	
mechanics

QFT

D Multiple point principle

We review the original argument for the MPP that says that the SM parameters
should be tuned so that our SM vacuum is degenerate with another one whose
vacuum expectation value of the Higgs field is around the Planck scale [36, 37, 38].

The quantum field theory (QFT) is formulated by the path integral

Z({�}) =

Z
[d'] e�S({�})['], (180)

where {�} denotes the dependence on the coupling constants (and mass) col-
lectively. The partition function (180) is analogous to the one in the canonical
ensemble in the statistical mechanics:

Z(�) =
X

n

e��Hn . (181)

However in the statistical mechanics, the most fundamental concept is the micro-
canonical ensemble:

⌦(E) =
X

n

�(Hn � E) . (182)

Froggatt and Nielsen argue that more fundamental formulation of the QFT may
be analogous to the micro-canonical ensemble, in which rather the average field
value is fixed while the coupling constants are determined dynamically. Let us
review their argument step by step.

The canonical ensemble becomes equivalent to the micro-canonical one in the
thermodynamic (large volume) limit: Given the partition function (181), we can
compute the multiplicity

⌦(E) :=

Z
d� e�EZ(�) =

Z
d�

Z
dE
 
X

n

�(Hn � E)

!
e��(E�E)

=

Z
d�

Z
dE ⌦(E) e��(E�E)

=

Z
d�

Z
dE eS(E)��(E�E), (183)

where we used the entropy S(E) := ln ⌦(E); noting that S(E), E , and E are
extensive variables, in the thermodynamic limit, the integral over � and E is
dominated by the strong peak at their stationary values; by taking variations of
E and �, we get dS/dE = � and E = E:

⌦(E) ! eS(E) = ⌦(E). (184)

The energy is fixed first, and then the temperature T := 1/� is determined dy-
namically. Later we will see, in the QFT language, that the inverse-temperature �
corresponds to the coupling constants, that the energy E, E to the spatial integral
over field values

R
dDx |'|n, and that the summation over the states

P
n to the

path integration
R

[d'].
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Thermodynamic	limt

As an illustration, let us consider a system of co-existing water and vapor with
a fixed pressure in a piston, placed in a room temperature. We add heat into
the piston. The temperature ��1 in the piston rises to the boiling point. Even if
we further continue to add the heat, it is used to make the water into the vapor,
without changing the temperature. This way, for a large range of energy, the
temperature is tuned to be the boiling point due to the two co-existing phases.
In QFT language, this will be translated to the statement that even if Nature
changes the field value in the micro-canonical version of the QFT, the coupling
constant (mass) is tuned to the value that allows two co-existing vacua.17

The ordinary QFT starts from the path integral (180). Let us illustrate the
situation by a simple toy model:

S
�
⇤, m2, �, . . .

�
['] =

Z
dDx

⇣
|@'|2 + ⇤ + m2 |'|2 + � |'|4 + · · ·

⌘
. (185)

The partition function reads

Z
�
⇤, m2, �, . . .

�
=

Z
[d'] e�S(⇤,m2,�,... )[']. (186)

The counterpart of Eq. (183) should be the following:

⌦(I
0

, I
2

, I
4

, . . . ) =

✓Z
d⇤

Z
dm2

Z
d� · · ·

◆
e⇤I0+m2I2+�I4+···Z

�
⇤, m2, �, . . .

�

=

✓Z
d⇤

Z
dm2

Z
d� · · ·

◆
e⇤I0+m2I2+�I4+···

Z
[d'] e�S(⇤,m2,�,... )[']

=

✓Z
d⇤

Z
dm2

Z
d� · · ·

◆ ✓Z
dI

0

Z
dI

2

Z
dI

4

· · ·
◆

⇥ e�⇤(I0�I0)�m2
(I2�I2)��(I4�I4)+···

⇥
"Z

[d'] e�
R
d

Dx (@')2

�

✓Z
dDx � I

0

◆
�

✓Z
dDx |'|2 � I

2

◆
�

✓Z
dDx |'|4 � I

4

◆
· · ·

#
,

(187)

where the dimensionality is

['] =
D � 2

2
, [I

0

] = �D, [I
2

] = �2, [I
4

] = D � 4, (188)

etc.
From the observation, we know that the volume of the universe V is much

larger than the Planck volume: V :=
R

dDx o M�D
P . In the thermodynamic

17 The e↵ective potential must be convex, which is realized as a spatially inhomogeneous configuration with
' = '1 in some regions and ' = '2 in other places, where '1 and '2 are local minima of the potential; see
e.g. Ref. [105].
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limit V ! 1, we will recover the multiplicity in the micro-canonical ensemble: 18

⌦(I
0

, I
2

, I
4

, . . . ) !
Z

[d'] e�
R
d

Dx (@')2�

✓Z
dDx � I

0

◆
�

✓Z
dDx |'|2 � I

2

◆
�

✓Z
dDx |'|4 � I

4

◆
· · ·

=: ⌦(I
0

, I
2

, I
4

, . . . ) . (189)

The “entropy” is given by
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, . . . ) . (190)

In the micro-canonical version of the QFT, Nature chooses a set of extensive
variables { I

0

, I
2

, . . . }. Natural choice would be the values of order unity in Planck
units, multiplied by the volume V:

I
0

⇠ V, I
2

⇠ VMD�2

P , I
4

⇠ VM2D�4

P , · · · . (191)

Suppose that such a generic set of extensive variables are given in the micro-
canonical picture. Then the integral over the intensive variables ⇤, m2, �, . . . in
Eq. (187) must be dominated by such values that allow the co-existing vacua,
whose mixture can reproduce the values (187) as their mean value. This is just as
in the heuristic example shown above. The field values in such vacua other than
ours must be around the Planck scale.

We comment that the e↵ective potential can be approximated by the quartic
term because the running Higgs mass is almost zero in Planck units in a mass
independent renormalization scheme. Therefore both the quartic coupling and its
beta function must be zero at the Planck scale in order to allow the other vacuum.
This has led to the predictions of the top mass 173 ± 5 GeV and the Higgs mass
135 ± 9 GeV [36], nearly twenty years before the Higgs discovery.

We note that the bare Higgs mass becomes accidentally small for a Planck scale
cuto↵, given the low energy data at the electroweak scale [18, 19, 20, 21, 29, 30, 31].
This smallness of the bare mass can be accounted for by the above argument if
we employ a regularization scheme in which the bare Higgs mass appears in the
e↵ective potential near the cuto↵; see e.g. Appendix B in Ref. [57].

In Ref. [37], this argument has been extended to the meta-stable vacua. In
Ref. [38], the delta function in this argument has been promoted to an arbitrary
function having appropriate peaks.

References
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18 Here we leave the kinetic term as is. one might apply the same argument for the kinetic term as well.
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Generalized MPP
✦ If	you	minimize	any	quantity	by	integral	
∫dΛ	∫dm2	∫dλ	…,	you	end	up	with	a	tip	
of	multiple	criticality.F(750), We Miss You! Holger F. Bech Nielsen
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Figure 5: Contour curves.

3. Theoretical Reason; Our Bennett’s and Mine Original Explanation [3, 4, 5, 6]
One assumes, that some extensive quantities / commodities i.e. some integrals over space

time of say fields raised to some powers etc. - say Higgs field squared - are fixed by “God”/ some
law, rather than as I think we would usually think, it is the couplings themselves that are selected
by “God”.

To really obtain the Multiple Point Principle as we wanted you must fix some integrals over
the four dimensional space time to “God given values”. Mathematically, however, what we did was
very analogous to what one does for a three dimensional system in working with micro-canonical
ensembles, when one e.g. fixes the energy, the volume, and the number of moles of say water.
Then without specifying these extensive quantities very accurately, one can get that the intensive
quantities temperature and pressure gets fine tuned to the triple point, see figure 6. In the bottle
with water, ice and vapour one has actually fixed the amount of mols of water molecules, the
volume and the total energy of the system inside the bottle. That is to say extensive quantities were
fixed, but not to any very special values. The pressure and temperature, however, come out with the
very special triple point values. The name for our principle is derived in analogy with this notation
“triple point” for the (pressure, temperature) combination appearing at such a meeting of several
(here three) phases.

One should take this analogy of the method for deriving the Multiple Point Principle with the
often found slush having to have a fixed temperature as very encouraging! When nature naturally
provides slush and just 00 Celsius for us, it might also make the MPP-situation for the couplings.
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From	Nielsen	et	al.	(2017)

Nielsen	(2012)



The more-multiple criticality,  
the better

✦ Already	tri-citicality	at	MP:	λ	〜	βλ	〜	m2bare	〜	0.	

✦ Why	not	also	F(φ)	〜	0	in	front	of	Ricci	scalar	R?	 
→	Next	part

[Hamada,	Kawai,	KO,	2013]


