

TESTING NATURALNESS

Tao Liu

The Hong Kong University of Science and Technology

Based on [C. Chen, J. Hajer, TL, I. Low and H. Zhang, arXiv: 1705.07743]

A discrepancy between two energy scales strongly correlated

A discrepancy between two energy scales strongly correlated

A discrepancy between two energy scales strongly correlated

Naturalness Problem in Particle Physics

Observation: (1) zero mass limit => chiral symmetry, and (2) chiral symmetry breaking => logarithmically divergent in m_e

$$m_e \sim m_e^0 [1 + 3a/4\pi \ln(\Lambda/m_e)]$$

t'Hooft statement for "technical naturalness" If the turning off of an ``unnatural" parameter results in an enhanced symmetry, then this parameter is ``technically" natural.

=> The smallness of me: not natural, but technically natural !

However, not all particle masses are technically natural in the SM

Naturalness Problem in Particle Physics tree loops $\delta m^2 \sim \frac{3}{2}(-\lambda^2 + \frac{g^2}{2} + \frac{g^2}{2} + \lambda)\Lambda^2$

``Hierarchy'' Problem

Solution II - Bosonic Symmetry (Little/Twin Higgs)

The underlying symmetry =>

(1) a spectrum of ``partner" particles

(2) a sum rule for canceling quadratic divergence in mh²

Motivated a vast amount of searches for ``partner" particles at, e.g., LEP, Tevatron, LHC, for decades

A must-be-done task post the discovery of any partnerlike particle:

Measuring the sum rule

One might ask:

why worry about step 2) when we have seen no empirical sign of a top partner??

The answer:

We live in a unique juncture in history!

As part of the planning for a new generation of particle accelerators, we would like to know the ability of a new hadron machine to unambiguously establish the Naturalness principle, should a top partner-like particle be discovered.

Ian Low, 2017 CERN-KCK workshop

$$\mathcal{L}_{U} = u_{3}^{c} \left(c_{0} f U + c_{1} H q_{3} + \frac{c_{2}}{f} H^{2} U + \dots \right)$$

+ $U^{c} \left(\hat{c}_{0} f U + \hat{c}_{1} H q_{3} + \frac{\hat{c}_{2}}{f} H^{2} U + \dots \right) + \text{h.c.} .$

$$\mathcal{L}_{U} = u_{3}^{c} \left(c_{0} f U + c_{1} H q_{3} + \frac{c_{2}}{f} H^{2} U + \dots \right)$$

+ $U^{c} \left(\hat{c}_{0} f U + \hat{c}_{1} H q_{3} + \frac{\hat{c}_{2}}{f} H^{2} U + \dots \right) + \text{h.c.}$

Model	Coset		SII(9)	0.	<i>a</i> .	0.	â	â	â
Woder Coset			50(2)	c_0	c_1	c_2	c_0	c_1	c_2
Toy model $\frac{SU(3)}{SU(2)}$		[22]	1	λ_1	$-\lambda_1$	$-\lambda_1$	λ_2	0	0
Simplest $\left(\frac{SU(3)}{SU(2)}\right)^2$		[23]	1	λ	$-\lambda$	$-\lambda$	λ	λ	$-\lambda$
Littlest Higgs $\frac{SU(5)}{SO(5)}$		[14]	1	λ_1	$-\sqrt{2}i\lambda_1$	$-2\lambda_1$	λ_2	0	0
Custodial	$\frac{\mathrm{SO}(9)}{\mathrm{SO}(5)\mathrm{SO}(4)}$	[20]	2	y_1	$\frac{i}{\sqrt{2}}y_1$	$-\frac{1}{2}y_1$	y_2	0	0
T-parity invarian	nt $\frac{SU(3)}{SU(2)}$	[19]	1	λ	$-\lambda$	$-\lambda$	$-\lambda$	$-\lambda$	λ
T-parity invariant $\frac{SU(5)}{SO(5)}$		[19]	1	λ	$-\sqrt{2}i\lambda$	-2λ	$-\lambda$	$-\sqrt{2}i\lambda$	2λ
Mirror twin Higg	gs $\frac{SU(4) U(1)}{SU(3) U(1)}$	[24]	1	0	$i\lambda_t$	0	λ_t	0	$-\lambda_t$

$$\begin{split} \mathcal{L}_{T'} &= m_{T'}T'^{c}T' + \lambda_{t'}Ht'^{c}t' + \lambda_{T'}HT'^{c}t' + \frac{\alpha_{t'}}{2m_{T'}}H^{2}t'^{c}T' + \frac{\alpha_{T'}}{2m_{T'}}H^{2}T'^{c}T' \\ &+ \frac{\beta_{t'}}{6m_{T'}^{2}}H^{3}t'^{c}t' + \frac{\beta_{T'}}{6m_{T'}^{2}}H^{3}T'^{c}t' + \mathcal{O}\left(H^{4}\right) + \text{h.c.} \end{split}$$

The contribution of the top sector to the C-W potential can be calculated, with the quadratically divergent contribution given by

$$\frac{1}{16\pi^2} \Lambda^2 \operatorname{tr} \mathcal{M}(H)^{\dagger} \mathcal{M}(H)$$

The requirement of a vanishing coefficient in H^2 =>

$$\alpha_{T'} = -\left|\lambda_{T'}\right|^2 - \left|\lambda_{t'}\right|^2$$

Top quarks and electroweak symmetry breaking in little Higgs models

Maxim Perelstein, Michael E. Peskin, and Aaron Pierce Phys. Rev. D **69**, 075002 – Published 8 April 2004

$$\alpha_{T'} = -\left|\lambda_{T'}\right|^2 - \left|\lambda_{t'}\right|^2$$

$$\alpha_{T'} = \lambda_{T'} \frac{m_T}{f}$$

4	Tes	ting th	e Model at the LHC	Really difficult!	16
	4.1	Measu	ring the parameter f		16
	4.2	Measu	$\operatorname{tring} \lambda_{T'} $		17
		4.2.1	Decays of the T quark $\ . \ . \ .$		17
		4.2.2	Production of the $T~{\rm quark}$		20

Top quarks and electroweak symmetry breaking in little Higgs models

Maxim Perelstein, Michael E. Peskin, and Aaron Pierce Phys. Rev. D **69**, 075002 – Published 8 April 2004

Not representative! E.g., little Higgs with T-parity

Surprising! Involves two parameters only
 top Yukawa coupling
 top partner Yukawa coupling

$$a_T = \alpha_{T'} + \left| \lambda_{T'} \right|^2$$

TTh production - insensitive to the sign of mu at leading order

Discovery Potential of Top Partner at 100 TeV

Not the ``Gold" channel for top partner search, but to show the effectiveness of the analysis

Exclusion of Unnatural Theories at 100 TeV

``unnatural theory" hypothesis: exclusion of ``unnatural theories" against a natural theory
 A deviation from the natural theory larger than 0.1 can be excluded up to ~ 2.2TeV

Precision of Measuring Naturalness Parameter at 100 TeV

A precision of 10% in measuring mu could be achieved up to ~ 2.5TeV

$$\delta \mu = \sqrt{\left(-\frac{1}{\lambda_t^2}\delta a_T\right)^2 + \left(2\frac{a_T}{\lambda_t^3}\delta\lambda_t\right)^2}$$

The naturalness problem has driven particle physics for decades

- To test the theories of naturalness, it is crucial to measure the naturalness sum rule, post the discovery of any partner-like particle
- ☑ For a top sector with fermionic top partners, the naturalness sum rule only depends on flavor-diagonal Yukawa couplings, up to an order O(v²/mT²)

$$a_T = -\left|\lambda_t\right|^2 + \mathcal{O}\left(rac{v^2}{m_T^2}
ight)$$

■ At 100 TeV with 30/ab, a precision of 10% for the measurement of the naturalness parameter could be achieved for top partners up to ~2.5TeV

How to break the degeneracy of the sign in the mu parameter?

For twin Higgs model, how to test the naturalness sum rule at collider level?

Maybe mono-Higgs search can help if T is stable

What is the naturalness sum rule in supersymmetry?

How to test the sum rule at colliders, post the discovery of any superparticle-like particle?

Long way to go, but exciting

14 TeV

100 TeV

 $t'^{c} = \frac{\widehat{c}_{0}u_{3}^{c} - c_{0}U^{c}}{c} \qquad t' = q_{3}$ $T'^{c} = \frac{\widehat{c}_{0}U^{c} + c_{0}u_{3}^{c}}{c} \qquad T' = U$

 $\mathcal{L}_{T'} = m_{T'}T'^{c}T' + \lambda_{t'}Ht'^{c}t' + \lambda_{T'}HT'^{c}t' + \frac{\alpha_{t'}}{2m_{T'}}H^{2}t'^{c}T' + \frac{\alpha_{T'}}{2m_{T'}}H^{2}T'^{c}T'$ $+ \frac{\beta_{t'}}{6m_{m'}^2} H^3 t'^c t' + \frac{\beta_{T'}}{6m_{m'}^2} H^3 T'^c t' + \mathcal{O}\left(H^4\right) + \text{h.c.}$ $c = \sqrt{c_0^2 + \hat{c}_0^2}$ $m_{T'} = fc$, $\lambda_{T'} = \frac{c_0 c_1 + \widehat{c_0} \widehat{c_1}}{c} ,$ $\lambda_{t'} = \frac{\widehat{c}_0 c_1 - c_0 \widehat{c}_1}{c} ,$ $\alpha_{T'} = c_0 c_2 + \widehat{c}_0 \widehat{c}_2 ,$ $\alpha_{t'} = \widehat{c}_0 c_2 - c_0 \widehat{c}_2 ,$ $\beta_{T'} = \left(c_0 c_3 + \hat{c}_0 \hat{c}_3\right) c$ $\beta_{t'} = (\hat{c}_0 c_3 - c_0 \hat{c}_3) c$,

Simplified Model - Mass Basis After EWSB

$$t^{c} = t^{\prime c} + \mathcal{O}\left(\frac{v^{2}}{m_{T^{\prime}}^{2}}\right) , \qquad t = t^{\prime} - T^{\prime}\frac{v}{m_{T^{\prime}}}\lambda_{T^{\prime}}^{*} + \mathcal{O}\left(\frac{v^{2}}{m_{T^{\prime}}^{2}}\right)$$
$$T^{c} = T^{\prime c} + \mathcal{O}\left(\frac{v^{2}}{m_{T^{\prime}}^{2}}\right) , \qquad T = T^{\prime} + t^{\prime}\frac{v}{m_{T^{\prime}}}\lambda_{T^{\prime}} + \mathcal{O}\left(\frac{v^{2}}{m_{T^{\prime}}^{2}}\right)$$

$$\mathcal{L}_{T} = m_{T}T^{c}T + \lambda_{t}vt^{c}t + \frac{\lambda_{t}}{\sqrt{2}}ht^{c}t + \frac{\lambda_{T}}{\sqrt{2}}hT^{c}t + \frac{a_{t}v}{\sqrt{2}m_{T}}ht^{c}T + \frac{a_{T}v}{\sqrt{2}m_{T}}hT^{c}T + \frac{\alpha_{T}}{\sqrt{2}m_{T}}h^{2}T^{c}T + \frac{b_{t}v}{4m_{T}^{2}}h^{2}t^{c}t + \frac{b_{T}v}{4m_{T}^{2}}h^{2}T^{c}t + \mathcal{O}\left(h^{3}, \frac{v^{2}}{m_{T}^{2}}\right) + \text{h.c.}$$

 $\begin{aligned} a_t &= \alpha_{t'} + \lambda_{T'}^* \lambda_{t'} , \\ b_t &= \beta_{t'} - \alpha_{t'} \lambda_{T'} , \end{aligned} \qquad \begin{aligned} a_T &= \alpha_{T'} + |\lambda_{T'}|^2 \\ b_T &= \beta_{T'} - \alpha_{T'} \lambda_{T'} \end{aligned}$

