## Neutrinos Meet SIMP

Koji Tsumura (Kyoto U.) Energy Frontier in Particle Physics: LHC and Future Colliders National Taiwan University, Sep 29-30, 2017

> Based on JHEP 1708, 101 (2017) [arXiv:1705.00592] "A Radiative Neutrino Mass Model with SIMP Dark Matter" In collaboration with Shu-Yu Ho (Caltech), Takashi Toma (TUM)

#### <u>Contents</u>



# Dark Matter

#### Dark Matter

#### Many Evidences for DM

- Galaxy Rotation Curve
- Velocity Dispersion of Galaxies
- Galaxy Clusters and Gravitational Lensing
- Sky surveys and baryon acoustic oscillations
- Cosmic Microwave Background (CMB) \_\_\_\_
- Type la supernovae distance measurements
- Lyman-Alpha Forest
- Structure Formation





## **Need DM**

#### Dark Matter

#### Many Candidates for DM

- Primordial Black Hole
- Neutrino (Hot)
- WIMP [Weakly Interacting Massive Particle ]
- SIMP [ Strongly Interacting Massive Particle ]
- Axion, Axion cluster
- Soliton (Q-ball, B-ball, ...)
- Super Massive Relic (WIMPzilla, ...)



#### Some Dark Matter Candidate Particles

...

#### WIMP Paradigm

#### A promising candidate for Thermal DM



## WIMP Miracle

#### A promising candidate for Thermal DM

#### **Annihilation**



## SIMP Paradigm

# New promising candidate for Thermal DM $\dot{n} + 3Hn = -(n^3 - n^2 n_{\rm eq}) \langle \sigma_{3 \to 2} v_{\rm rel} \rangle$



## <u>SIMP Miracle</u>

## New promising candidate for Thermal DM

Annihilation



3→2 annihilation in DM sector

$$\langle \sigma_{3 \to 2} v_{\rm rel}^2 \rangle \equiv \frac{\alpha_{3 \to 2}^3}{M_{\rm DM}^5}$$

 $M_{\rm DM} \simeq \alpha_{3 \to 2} \times 100 {\rm MeV}$ 

Strong int. +  $\Lambda_{QCD}$  (SIMP Miracle)

#### SIMP Stability? Strong Cubic int. $|\mathsf{ex. } \mathsf{Z}_3 \colon \chi \to e^{(2\pi/3)i}\chi \quad \mathcal{L}_{Z_3} = m^2 |\chi|^2 + \kappa(\chi^3 + \mathrm{H.c.}) + \lambda |\chi|^4$ $\sim \frac{\kappa^3}{M^4}$ DM DM DM

#### $3 \rightarrow 2$ annihilation in DM sector

$$\langle \sigma_{3\to 2} v_{\rm rel}^2 \rangle \equiv \frac{\alpha_{3\to 2}^3}{M_{\rm DM}^5}$$

DM

single scale theory

 $\sim rac{\kappa\lambda}{M^2}$ 

\*\*\*\*\*\*\*\*\*\*\*

 $\kappa \sim g M, \ \lambda \sim g^2 \quad \Longrightarrow \quad \mathcal{M} \sim \frac{g^3}{M}$ 

NTU Sep. 29-30, 2017

DM

#### Hot DM ?



Need connection with SM to keep it in Thermal Equilibrium

$$\begin{array}{ccc} \mathrm{DM} & & & & \\ & & & \\ \mathrm{SM} & & & \\ & & & \\ & & & \\ \end{array} & & & \\ & & & \\ \mathrm{SM} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} \mathrm{New \ portal \ int.} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

#### SIMP Condition





# Neutrino

#### <u>Neutrino</u>

 $M_{\nu} < < < < < < v_{\rm EW}$  $O(10^{12})$  $= 2.46 \times 10^{11} \, eV$  $\sim 0.1\,\mathrm{eV}$ 

 $M_{\nu} << < M_e \quad \mathcal{O}(10^7)$ = 5.11 × 10<sup>5</sup> eV



 $\sim 0.1\,\mathrm{t}$ 

 $\sim 2.9 imes 10^{12} \, {
m t}$  <u>Mt. Fuji</u>

(a big mountain)



### Seesaw Mechanism

## Neutrinos can be Majorana Particle



## Neutrinos Meet DM

Scoto-genic Model (Scotos = Darkness)

Ma (06) [Ma (98)]

Z<sub>2</sub> odd Imposed Discrete Sym. → WIMP DM



Z<sub>3</sub> charged

Ma (07)



#### Can we construct a model with SIMP DM?

\*\*\*\*\*\*\*\*

NR

η

η

S-Y Ho, T. Toma, KT, JHEP1708, 101 (2017) [arXiv:1705.00592] "A Radiative Neutrino Mass Model with SIMP Dark Matter"

|                   | vSIMP <sup>g</sup> ₃→2 |     |   |        |        |                                      |  |  |  |  |  |  |
|-------------------|------------------------|-----|---|--------|--------|--------------------------------------|--|--|--|--|--|--|
|                   |                        |     |   |        |        | New Particle                         |  |  |  |  |  |  |
|                   | E                      | Φ   | N | $\eta$ | $\chi$ | γ η χ <sup>ο</sup> η<br>Υποτεί       |  |  |  |  |  |  |
| SU(2)             | 2                      | 2   | 1 | 2      | 1      | • portal N N                         |  |  |  |  |  |  |
| $\mathrm{U}(1)_Y$ | -1/2                   | 1/2 | 0 | 1/2    | 0      |                                      |  |  |  |  |  |  |
| $\mathbb{Z}_3$    | 1                      | 1   | ω | ω      | ω      | Mediator for Cooling<br>ω=exp(2πi/3) |  |  |  |  |  |  |

NTU Sep. 29-30, 2017

 $M_{\rm DM} \simeq \alpha_{3 \to 2} \times 100 {\rm MeV}$ 

#### <u>Relic Abundance</u> $\kappa_{\chi} \leftrightarrow g_{3 \rightarrow 2} M_{\text{DM}}$





#### Requiring the correct DM relic abundance







#### Resonant SIMP .Choi, Lee '16

Large  $\sigma_{3\rightarrow 2}$  while keeping  $\sigma_{2\rightarrow 2}$  small by Resonance



S-Y Ho, T. Toma, KT, JHEP1708, 101 (2017) [arXiv:1705.00592] "A Radiative Neutrino Mass Model with SIMP Dark Matter"



NTU Sep. 29-30, 2017

#### Radiative M<sub>v</sub>

**From SIMP Condition** 

≈ 100 MeV ≈ 0.1 ξ≈ 0.05

$$(M_{\nu})_{rs} = \frac{\mu_2 Y_{rj} Y_{sk} s_{2\xi}^2}{4(4\pi)^2} \begin{pmatrix} \bullet \approx 10^{-3} \\ \mathcal{Y}_{ji}^L \mathcal{C}_{ji}^L + \mathcal{Y}_{ji}^R \mathcal{C}_{ji}^R \end{pmatrix}$$

$$\approx 0.1 \text{eV}$$
Loop integrals  $\approx 0.1-10$ 



✓ Direct Search of  $\eta$ 

#### Relic Abundance



Stability :  $\mu_2 \lesssim 100 \text{MeV} \rightarrow \text{Y s}_{2\xi} \lesssim 0.01$ Koji Tsumura (Kyoto U.)

#### Lepton Flavor Violation

$$\mathcal{B}_{\ell_r \to \ell_s \gamma} \approx \frac{\alpha \, \mathcal{B}_{\ell_r \to \ell_s \overline{\nu_s} \nu_r}}{768 \pi G_F^2 m_\eta^4} \Big| \sum_k \mathcal{Y}_{rk}^{\star} \mathcal{Y}_{sk} \Big|^2$$

Without considering the specific structure of Yukawa





#### **Conflict with SIMP condition**

#### An easy solution :

$$\mathcal{Y} = \begin{pmatrix} Y_{e1} & Y_{e2} & Y_{e3} \\ Y_{\mu 1} & Y_{\mu 2} & Y_{\mu 3} \\ Y_{\tau 1} & Y_{\tau 2} & Y_{\tau 3} \end{pmatrix} \longrightarrow \begin{pmatrix} Y_{e1} & & \\ & Y_{\mu 2} & \\ & & Y_{\tau 3} \end{pmatrix}$$



 $\eta^-$ 

 $\ell_r^-$ 

 $\eta^-$ 

 $N_k$ 

 $\ell_s^-$ 

Structure of  $M_v$  can be adjusted by  $Y^L$ ,  $Y^R$ 

# **Energy/Precision Frontier**

## Higgs Invisible Decay

 $[h_{125} \rightarrow \chi^0 \chi^0]$  is induced by mixing

$$\mathcal{L}_{\text{eff}} = -\frac{1}{2} \kappa \, s_{2\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0 \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0} \, z_{\xi} \, z_{\xi} \, h \, (\chi^0)^2 \implies \Gamma_{h \to \chi^0} \, z_{\xi} \, z_{\xi}$$

$$\frac{(\kappa s_{2\xi})^2}{64\pi m_h}$$

ŋ

The latest data :  $B(h \rightarrow \chi^0 \chi^0) < 0.16$ 

 $|s_{2\xi}| < 0.11 \times \left(\frac{\mathcal{B}_{inv}^{up}}{0.16}\right)^{1/4} \left(\frac{300 \,\mathrm{GeV}}{m_n}\right)$ 

 $n^{0}-\chi^{0}$  mixing

$$\kappa_{2\xi} = \frac{\kappa v}{m_{\eta}^2 - m_{\chi}^2}$$

SIMP condition  $\rightarrow$  Y s<sub>2</sub>  $\leq$  0.01

## Slepton Direct Search



#### <u>Summary</u>

- v & DM are evidences of BSM
  vSIMP
  - M<sub>v</sub> may be generated by SIMP
  - SIMP may be thermalized by v
  - Collider search is powerful probe of vSIMP

|                     |      | $\Phi$ | N | $\eta$ | $\chi$ | $egin{array}{c} S \end{array}$ |
|---------------------|------|--------|---|--------|--------|--------------------------------|
| SU(2)               | 2    | 2      | 1 | 2      | 1      | 1                              |
| $\mathrm{U}(1)_{Y}$ | -1/2 | 1/2    | 0 | 1/2    | 0      | 0                              |
| $\mathbb{Z}_5$      | 1    | 1      | ω | ω      | ω      | $\omega^3$                     |

