A Supersymmetric Electroweak Scale Seesaw Model

Martin Spinrath (史馬丁)
National Center for Theoretical Sciences, Hsinchu, Taiwan

Energy Frontier in Particle Physics - 30/09/2017

Based on arXiv:1707.04374 (accepted for publication in JHEP) in collaboration with: Jung Chang, Kingman Cheung, Hiroyuki Ishida, Chih-Ting Lu, Yue-Lin Sming Tsai

- Introduction
- The Model
- Phenomenology
- Summary and Outlook

- Introduction
- The Model
- Phenomenology
- Summary and Outlook

Introduction

- Why Supersymmetry?
 - Appealing solution for the hierarchy problem
- Why Electroweak Scale?
 - We can test it now at the LHC
- Why Seesaw?
 - Explanation for the smallness of neutrino masses
- → A SUSY EW scale seesaw model

- Introduction
- The Model
- Phenomenology
- Summary and Outlook

Field content

- MSSM fields
- Right-handed neutrinos N (at least 2)
- Lepton-like gauge singlet fields S (at least 2)
- Higgs-like gauge singlet field X (at least 1)

Symmetries and Superpotential

Superfield	\hat{Q}_i	\hat{U}_i^c	\hat{E}_i^c	\hat{L}_i	\hat{D}_i^c	\hat{H}_u	\hat{H}_d	\hat{N}^c_{lpha}	\hat{S}_{lpha}	\hat{X}
Z_6 charge	5	5	5	3	3	2	4	1	5	2

- SM gauge symmetries + Z_6 (SU(5) compatible)
- Superpotential (R-parity conserved by Z₆)

$$W = W_{MSSM} + Y_{\nu} \hat{L} \hat{H}_{u} \hat{N}^{c} + \mu_{NS} \hat{N}^{c} \hat{S} + \frac{\lambda}{2} \hat{X} \hat{S}^{2} + \frac{\kappa}{3} \hat{X}^{3}$$

Broken Symmetries

- Lepton number explicitly broken
- Electroweak symmetry broken as in the MSSM
- Z_6 broken to Z_2 by vev of X

$$v_X = -\frac{A_\kappa}{4\,\kappa^2} \pm \frac{\sqrt{A_\kappa^2 - 8\,\kappa^2 M_X^2}}{4\,\kappa^2}$$

- Introduction
- The Model
- Phenomenology
 - Neutrino Masses and Mixing
 - Neutrinoless Double Beta Decay
 - Charged Lepton Flavor Violation
- Summary and Outlook

ISS Types

$$M_{
u} = egin{pmatrix} 0 & M_D & 0 \ M_D^T & 0 & \mu_{NS} \ 0 & \mu_{NS}^T & M_S \end{pmatrix}$$

- 3 kinds of Inverse SeeSaw (ISS) mechanism:
 - ISS Type I: $M_S \ll M_D \ll \mu_{NS}$ (conventional ISS)
 - ISS Type II: $M_S \sim M_D \ll \mu_{NS}$
 - ISS Type III: $M_D \ll M_S \ll \mu_{NS}$
- M_D and M_S proportional to EW scale vevs

Neutrino Masses & Yukawa Couplings

Common leading order light neutrino masses

$$m_{\nu} = M_D \,\mu_{NS}^{-1} \, M_S \,\mu_{NS}^{-1} \, M_D^T \sim Y_{\nu} \,\lambda \, Y_{\nu}^T \,\mathcal{O}(\text{TeV})$$

- Tiny masses due to small Yukawa couplings
- Casas-Ibarra formula in our case

$$Y_{\nu} = \frac{\mathrm{i}}{v_u} U_{\mathrm{PMNS}} \sqrt{m_i} \Omega \left(\sqrt{M_S^d} \right)^{-1} V_S$$

Neutrino Masses & Yukawa Couplings

- In minimal case one neutrino massless
- Sizes of the Yukawa couplings
 - ISS Type I: $Y_{\nu} \sim 10^{\text{-4}}$ and $\lambda \sim 10^{\text{-8}}$ and $\epsilon_{\text{I}} \sim 10^{\text{-4}}$
 - ISS Type II: $Y_{\nu} \sim 10^{-5}$ and $\lambda \sim 10^{-5}$ and $\epsilon_{\text{II}} \sim 10^{-5}$
 - ISS Type III: $Y_{\nu} \sim 10^{-6}$ and $\lambda \sim 10^{-3}$ and $\epsilon_{\rm III} \sim 10^{-3}$

Neutrinoless Double Beta Decay

- New neutrino states almost Dirac
- Contributions to $m_{\rm eff}$ small, e.g. ISS Type I:

$$m_{\text{eff}}^{\text{new}} \simeq \sum_{i=4}^{7} (U_{ei})^2 \frac{\langle p^2 \rangle}{\mu_{NS}^2} M_S \approx 8 \times 10^{-9} \text{ meV} \cdot \left(\frac{\text{TeV}}{\mu_{NS}}\right)$$

• In minimal version $m_{\rm eff}$ is O(1) meV for NH and O(10) meV for IH

Non-Unitarity of the PMNS Matrix

- The 3x3 PMNS matrix is not unitary anymore
- In this model

$$U_{\rm PMNS}U_{\rm PMNS}^{\dagger} = 1 + \mathcal{O}(\epsilon^2)$$

• Current constraints ϵ < O(10⁻³ - 10⁻¹)

[Fernandez-Martinez, Hernandez-Garica, Lopez-Pavon 2016]

- Smoking gun for new physics
- In our model two kind of contributions
 - Non-SUSY contributions from new neutrinos
 - SUSY contributions involving charged sleptons and sneutrinos

The non-SUSY part can be written as

$$BR(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i} U_{ie} U_{i\mu}^* F(m_i^2/M_W^2) \right|^2$$

 Dominant contribution from non-unitarity of the mixing matrix

$$\mathrm{BR}(\mu \to e \gamma) = \begin{cases} \mathcal{O}(10^{-20}) & \text{for ISS type I,} \\ \mathcal{O}(10^{-24}) & \text{for ISS type II,} \\ \mathcal{O}(10^{-28}) & \text{for ISS type III,} \end{cases}$$

• Experiment: BR($\mu \to e\gamma$) < 4.2·10⁻¹³ @90%CL

- SUSY part very similar to MSSM apart from sneutrinos
- Sneutrinos combination of left-, right-handed sneutrinos and scalar component of extra singlets
- The vev of X induces (small) mass splitting of the real and imaginary part of the sneutrinos
- Minimally 14 (real) sneutrinos

 Neglecting contributions proportional to small Yukawa couplings

$$m_{\tilde{\nu}^R}^2 \approx m_{\tilde{\nu}^I}^2 \approx \begin{pmatrix} \Re(M_{\tilde{L}}^2) + \frac{1}{2}M_Z^2\cos(2\beta) & 0 & 0 \\ 0 & \Re(M_{\tilde{N}^c}^2 + \mu_{NS}\mu_{NS}^{\dagger}) & \Re(b_{NS}) \\ 0 & \Re(b_{NS}^T) & \Re(M_{\tilde{S}}^2 + \mu_{NS}^{\dagger}\mu_{NS}) \end{pmatrix}$$

- Real and imaginary part have same mass
- Small mixing of left-handed sneutrinos with other sneutrinos

- Introduction
- The Model
- Phenomenology
- Summary and Outlook

Summary and Outlook

- Attractive minimal supersymmetric low-scale seesaw model
- No ad-hoc assumptions on which symmetry is broken at which scale
- Many predictions
- Many features yet to be explored (DM, Leptogenesis, ...)

Thanks a lot for your attention!