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Motivation

* Higgs, as probe of new physics

* Almost all BSMs entail an enlarged

Higgs sector.

* We would anticipate new kind of
interactions such as Vector-Scalar-

Scalar (VSS) interactions which are

absent in the SM. .

L=l
/
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Motivation

* How to derive the VSS vertices in a specific BSM model?

 Start with the gauge covariant kinetic terms of the scalar

fields

* Expand the fields into vevs and components without vev
* Extract the 3-pointVSS vertex

* Submit the results to PRD/|JHEP/PLB/NPB/EP]C... & wait for

the editorial decision
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Motivation

* Sometimes the story is not so simple, e.g. for a nonlinearly-

realized scalar sector.

* Taking the SLH as an example (Here we focus on the neutral
sector), there exists ‘unexpected’ vector-scalar two-point
transitions from a naive expansion of the gauge kinetic terms.Also,

the scalar kinetic terms are not canonically normalized.

* A procedure for the diagonalization of a general vector-scalar

system in gauge field theories is needed.



General consideration:

Formulation of the problem

* Consider a gauge field theory with

ng real scalar fields G;,7 =1,2,...,ng ©° ::r‘j:nfi‘j;me;:r‘;‘;‘“:f eigenstate
nys real massive gauge boson fields Z,,p = 1,2,...,n)y.
* Suppose its classical Lagrangian contains

1 1 1
Lauad 2 5Vij(0uGi)(0"Gj) + FpiZy (0uGi) — §(M%)z‘sz‘Gj + Q(M%r)quwZ:?

* We also define ép = F,Gi,p=1,2,....,npy

* Question: How to diagonalize this system and derive the

Vector-Scalar-Scalar vertices?
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General consideration:
Gauge-fixing options

* |t is natural to consider the tentative gauge-fixing terms

nm

1 ~ \2
Lof = — Z% (OuZl — EPG)p)
* Then the quadratic parts are free of vector-scalar transition
Equa,d + ﬁgf D,

1 1 = 1 1 1
§Vij(8ﬁGi)(a”Gj) - §£pG12:- - §(Mg¥)ijGiGj 555 (Ou Z#)Q Q(M%/)qupﬁzﬂ

5 q
* There is freedom in the gauge-fixing and we will show

below there is a theoretically well-motivated choice.
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General consideration:

Treatment of scalar kinetic terms

* Suppose we apply a transformation which renders the scalar

kinetic terms canonically normalized
Si = UG V=U'U

%%(aﬂai)(amﬂ = %(%Si)(@”si)

* The quadratic parts then become

1

1 1 -
Louad + Lof D5(0u8:)(0"Si) - 55?@3 — (U HTMEUY),;S;

2
1 1

2 2
365 OnZ) & 5 (M )paZp 2
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General consideration:

Diagonalization of the original scalar mass terms

* To diagonalize
1 —I\T'a2 771
—5((UT7) " MEU™")i55:5;
Suppose we use an orthogonal transformation
5’4, = Piij
Then the quadratic parts become
Louad + Lgf D (a 3,)(0"5;) — .prz ~lpso Loy (M%,)pq Wi

e Note: " = ny + 1,...,?’13

9/29/2017



General consideration:

Highly suggestive scalar mass terms

 Let us take a closer look at the scalar mass terms

1 = 1 5=
!/ __ 2 242
L= -G - S8

* We want to diagonalize it by an orthogonal transformation
5‘13‘ = Kijgj

* Natural/educated guess

Si = a;H;,i=1,2,...,ng (no summation over i)

Gi, i=1,2,...num,
Hi:{ M

Si, t=npy+1,...,ng.

Question:
9/29/2017

How to determine whether the corresponding K is orthogonal?

(2.12)

(2.13)

(2.14)



General consideration:

Introducing the inner product

In the real vector space spanned by the G/s, we introduce an inner product,

defined through (recall that the S/s have canonically-normalized kinetic terms)

< Sz‘SJ >= 53‘3'?3',‘)' =1,2,...,ng

The question of whether the matrix K is orthogonal reduces to determine

whether the S’s form an orthonormal basis.

We may always adjust the ao.’s so that

< SHSZ >=1,Vi=1,2,....ng

Then the crucial question becomes whether

< 5’1|§3 >= (0 holds when 7 # j.
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General consideration:

Physical scalars

* Mass diagonalization is supposed to have already been

realized for n¢-ny, physical scalars.

* Eigenvectors which belong to different eigenvalues of a real

symmetric matrix must be orthogonal to each other.

 Therefore
gr,?" =nym+1,...,ng

must be orthogonal to each other and to the G, ’s.
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General consideration:

Inner products of Goldstone vectors

—

Now the crucial question is whether the G,’s are orthogonal to each other.

When the scalar fields are canonically normalized in their kinetic part, the

vector-scalar two-point transitions in a gauge theory has the form (see Weinberg)

5 0,615 Al 2.17)

nmao

On the other hand, the elements of the gauge boson mass matrix are

Hop = — Z £t Um Uy (2.18)

nml

* Comparing these two expressions we find

< GplGy >= (M) pg, VD, g = 1,2, ...,n1 (2.19)
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General consideration:

A convenient way to eat the Goldstones

< GplGy >= (M} )pg, V0, ¢ = 1,2, ..., nps (2.19)

* Eq.(2.19) suggests that if the gauge bosons are already in their mass eigenstates, then

the related Goldstone boson vectors must be orthogonal to each other.

* Physically this implies that massive gauge bosons eat their corresponding

Goldstone bosons along the directions dictated by their mass eigenstates.

* Therefore it would be desirable we rotate the gauge fields to their mass eigenstates

before adding the gauge-fixing terms

nmMm 1

Lo =~ 5er Ondp — §rGyp)”
p=1

The alternative option, although legitimate, could be very inconvenient.
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General consideration:

General results of diagonalization

* Now suppose the gauge boson mass matrix can be diagonalized by an

orthogonal matrix R as
RM{,R™" = Mpy = diag{pi, 13, ---» iy, }

e Let us define

%G‘ _ (RF)pi
=

Hp Hp

Gm

p

G;,p=1,2,...,n) (no summation over p)

* So that we may easily check

1
(RM%/RT);DQ — 5pqavPa q = 11 21 s UM

< GG >=
p q pllq
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General consideration

General results of diagonalization

* Suppose
g?‘ — T’riGi:T =ny +1,...,ng

e Then we have

G = QiiGj,i=1,2,...,ns (2.24)

where the ng x ng matrix @) is defined by (no summation over 1)

BBy i=1,2,..,m
Qij _ w0 | g Ly ey UM (225)
T;;, t=mnpy +1,...,ng.
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Application to the SLH:
Review of SLH

e Little Higgs mechanism: Higgs is realized as a PNGB of some global

symmetry breaking. And the explicit breaking of the global symmetry is

realized collectively. N.Arkani-Hamed et al,, JHEP 07(2002)034

* Simplest Little Higgs (SLH): based on SU(3);, x U(1)x electroweak

gauge group and the global symmetry breaking pattern
[SU(3)1 X U(l)l] X [SU(3)2 X U(I)Q} — [SU(2)1 X U(l)l] X [SU(2)2 X U(l)g]

realized through two scalar triplets. M.Schmaltz, JHEP 08(2004)056
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Application to the SLH:

Parametrization of the scalars

* Double exponential parametrization of the scalar triplets
F. del Aguila et al., JHEP 03(2011)080

0

P, =exp (%) exp (it;@) 0 D9 = exp (17@) exp (_f_tﬁ

fes

_n O2x2 h r_ ¢ 029 k
@_\/§+(h1 0)’ @‘\/f(m 0)

kO :
k= (k) , kY= E(U—zw)

o017 sg = sinf,cg = cosfB,tg = tanf



Application to the SLH:

Parametrization of the gauge fields

* Gauge kinetic terms for the scalar triplets

Lo = (D,u(pl)T(D“q)l) + (Dﬂ®2)T(Dﬂ®2)

. . gtw
D, =0, —igA,T" +19:Q:B),, gu = 5 Qz = _%
V1- /3
5 (100 48 (100 L[ 0 WEYD
AT =-FE10-10]l+—1010 |+—=|W, 0 X,
Iz 9 H H
000/ 3 \oo-—2) V2 vt X0
o_ 1 - P 1
Y,u = _2(YR,{L+ZYI,U)D Y,u = E(YRPJ—ZYIH)
A3 L w

First order gauge
boson mixing

sw
V3
B$ tw t%v t%v
w1 = /1 e
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Application to the SLH:

CP-even and CP-odd sectors

* The observed Higgs mass receives contribution from the Coleman-

Weinberg potential and the mu term
L, = p2(®1®y + h.c.)
 CP-even sector: H,0.Yp
e CP-odd sector: 7,C,Xx,w, 2", Z, Y]

* Here our goal is to derive the mass eigenstate ZHn vertex.Ve don’t

need to show the fermionic sector.
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Application to the SLH
Rescaling of n

* The advantage of the double exponential parametrization is that n is

only subject to a simple rescaling.Also H & o does not mix.

* Consider the inner product of two Goldstone fields

<GilGj > = U Na(U ™) < Sel S >= (U Ha(U ™) ju0r = (Ui (U™H)
* Suppose 7,(,x,w correspond to indices 1,2,3,4, respectively, then

<nln>= V"

e Therefore we can find the transformation for n

n=+vV-"Hun™
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Application to the SLH:

Finding the n™ component

* We express the CP-odd sector matrix F as

Fzyn Fz¢ Fz, Fz, ) Fz: Fz, Fgz,

F = | Fzmy Fz¢ Fzry Fzi, F=|Fyg¢ Fzy Fz,
Fyn Fye Fyy Fyo Fy¢ Fy, Fy,

% ?-’:1121"'372’]'&{1

Mio
i=ny+1,...,ng.

e Recall GI"=Q;;Gj,i=1,2,...ns Qij = {T

Y&

* The application of this result to the SLH leads to

¢ Fzy S
X" | =MpyR || Fzry | n+ F | x (3.19)
wm Fy, w
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Application to the SLH:

Finding the n™ component

* Eq.(3.19) can be inverted to give

¢ ~ ¢m B FZTP
x| =F '"R"Mpy | x| -V Y)uF ' | Ezy | 0™
w w™ FYTF

vIVhHn
Fz,
—4/ (V*1)11F_1 FZ’??

Fyy,

* Define

T

Ry = (Rll Ry 313)
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Application to the SLH:

General formulas for the ZHn vertex

* Also needed are the coefficient matrices

C4l cgil oyl cgH cl cgg CZX cHd
i — | e c cw , CHi= c,qc cxcz,w
Ci‘fﬁ 05‘5? Ci‘ﬂ*’i CYs Cyy C{ff Gy Y

Here C2 denotes the coefficient of Z#nd, H, while CZ? denotes the coefficient of Z*Hd,n.
Zn 2 Zn uTl

* Then we have the formulas for the coefficient of the mass eigenstate

ZHn vertex (antisymmetric type & symmetric type)

as R,CH Y — R,CHIY i R,CHY 4+ R,CHIY
ZHT} 2 CZH?}‘ - 2
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Application to the SLH:

Results

Results for matrixV, E Y, CdH, CHd to

( 1 0
0 1
V = f 7c23+c65 &.3 —Lfﬂ‘ 5+3cap é.3
tap 6v/2s3, V2 12f 2534
. 5+3645 3 3
K ff‘l‘ 3\/58%36 31';265
+0(¢)
F =
1 g2 _;62
\/_thg,s 2V 2cyy
f 52 v2 1+2cow 62
g t2p 312, 2\/_ 2 312,
5+3c
_5 + - 53 3t26 63
+0(€h)
- 1+ QCQW
9/29/2017 — V 1+C2W

to

O €=
é _ 7‘326+063

] 6V2s3,

_Ef * 152%:;32 &
1- %52
3

a2

RE — i;j%s -

2
3t23 f

Cow
2/ 2
2ci4/3 — iy

f

(Obtained by Mathematica)
5+3cap
—V20 3f ‘; \
31:26 53
5178
)
(3.26)
301,1;25 63
1 63
3ck\/3— 13 tag
1
V2
(3.27)
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Application to the SLH:

Results

[ 1+ Ee+oE) )

e el 1+o@Eh) e o) e+ o)
T = " tap R— cow (1+2cow) €2+o(§ ) 1+O(f4) __V2(14+2cow) 53 +o(§5)
- _ﬁg_ _3cap §3+@(§5) - 8%’;‘,,/3 5 3cy /313y tap
PR RZg+oE) Zml oo 1+06)
\ V26 + 33\/5458 £+ 0(&) ) 3cwt25 3cjy /3ty tas
553
5+3 4
00 —3& + 50+ 0(E) 0
dH 00 — g(1— tW) n gK 5—|—3C43 52 + 0(64)
C™ = 2\/3 2] 1253,
9(762ﬁ+663 3 5
00 3t2ﬁ§+ 30‘5336 £ -i-O(f ) 0
(CHd —
9(Tcaptcep) ¢3 g 9(5+3c4p) ¢3 g (5+3G43) 2 2
CW'tQ,B5 3\/§Cws23 £ §+ chws 6 2C‘W 86W52 5 C‘WfQ,S‘£
2gp 99(7023+Cﬁa) 3 9p(5+3643) 3 gr(5+3cap) ¢2 2
fas S § gp§+ T 98— o, & 2 3Tt
c Tc c
g+ 9(524;3 43)52 ~ 52 23\15/2;96 fg(lsif; 63)53
+0O(¢h (3.31)
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Application to the SLH:

Results

* The final results, for the coefficient of mass eigenstate antisymmetric

( Zr(nd,H — HO,n) ) & symmetric (Z*(nd,H + HJd,n)) ZHn vertex, to O(&%) ,are

as g 3 5
c =—— € +0 3.33
ZHn INES tQﬁf (&) (3.33)
g g 6 1 )] 3 5
THy = + + 3 8+ 5 — +0 3.34
“aH ﬁcwtwg 24\/2cw s93 {52ﬁt2f3 025( iy Cy ¢ &) (334

* From our derivation, the antisymmetric vertex vanishes at O(§), which is different

from the expression that has existed for a long time.

mg F;—F°
L = —N,Z,(no*H — Ho*n) N, = 2 !
ST 2T TFF,

W. Kilian, D. Rainwater & J. Reuter, PRD 71,015008(2005), PRD 74,095003(2006).

* The n phenomenology could thus be very different. (On-going study)
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Discussion and conclusion

* A general procedure is elucidated to diagonalize a general vector-scalar system in gauge theories.
The convenience of rotating to gauge boson mass eigenstate before adding gauge-fixing terms is
emphasized, based on the observation that massive gauge bosons eat their corresponding

Goldstone bosons along the directions dictated by their mass eigenstates.

* The general procedure is then applied to the case of the SLH, which due to its nonlinearly-
realized scalar sector entails a general treatment for its non-canonically normalized scalar kinetic

terms and ‘unexpected’ vector-scalar transitions.

* We obtained O(§3) mass eigenstate antisymmetric and symmetric ZHn vertices and
found them to be different from expressions that has existed in the literature for a long time.

The n phenomenology could be quite different.

* The general procedure could also be applied to other models with nonlinearly-realized scalar

sector. Finding a convenient parametrization may be important.
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