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Motivations

• The SM with one Higgs doublet is not natural. 
Another heavy scalar boson can appear soon.


• LHC searched for H -> ZZ -> 4l and there are 
some 2-3 sigma here and there.


• The decay H ->ZZ->4l involves a number of angles 
that one can investigate the CP properties of the 
boson.



Interactions of HZZ
II. FORMALISM

One may start by defining the interaction of the heavy Higgs boson H with a pair of Z

bosons. The amplitude for the decay process H ! Z(k1, ✏1) Z(k2, ✏2) can be written as 4
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gMW

c2W
�ZZ
µ⌫ ✏

⇤µ
1 ✏⇤⌫2

= i
gMW

c2W

(

g
HZZ

✏⇤1 · ✏⇤2 + SZZ
H (s)

"

�2k1 · k2
s

✏⇤1 · ✏⇤2 +
2

s
k1 · ✏⇤2 k2 · ✏⇤1

#

+ PZZ
H (s)
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s
h✏⇤1✏⇤2k1k2i

)

(1)

where k1,2 and ✏1,2 are the four-momenta and the wave vectors of the two Z bosons, respec-

tively, with s = (k1+k2)2 = M2
H and h✏⇤1✏⇤2k1k2i ⌘ ✏µ⌫⇢�✏

⇤µ
1 ✏⇤⌫2 k⇢

1k
�
2 . The first term may come

from the dimension-four renormalizable operator

L =
gMW

2c2W
g
HZZ

ZµZ
µH (2)

while the form factors SZZ
H and PZZ

H can be generated by including higher-order corrections

and/or introducing non-renormalizable operators. In the former case, SZZ
H and PZZ

H can

be complex by developing non-vanishing absorptive parts in the existence of (New Physics)

particles running in the loop with mass less than MH/2. Therefore, in general one may need

5 real parameters to describe the interaction of the heavy Higgs boson H with a pair of Z

bosons. Note that g2
HZZ

 1 � g2
hZZ

= 1 � C2
v with equality holding when h and H are the

only Higgs bosons participating in the electroweak-symmetry breaking. We observe that

being di↵erent from the case of SM Higgs boson, in which g
hZZ

is dominating over the loop-

induced SZZ
h and PZZ

h couplings, each of the couplings g
HZZ

, SZZ
H , and PZZ

H may contribute

comparably in the heavy Higgs-boson case. We further observe that either g
HZZ

⇥ PZZ
H 6= 0

or SZZ
H ⇥ PZZ

H 6= 0 implies that H is a CP-mixed state, thus signaling CP violation.

Incidentally, the interaction of the Z boson with a fermion pair is described by the

interaction Lagrangian:

LZff = � g

cW
f̄�µ(vf � af�5)f Zµ = � g

cW

X

A=+(R),�(L)

f̄�µ(vf � Aaf )PAf Zµ (3)

with vf = If3 /2�Qfs
2
W , af = If3 /2 and PA = (1 + A�5)/2.

4 Throughout this paper, we use the following abbreviations: s✓ ⌘ sin ✓, c✓ ⌘ cos ✓, s� ⌘ sin�, c� ⌘ cos�,

c2� ⌘ cos 2�, s2� ⌘ sin 2�, sW ⌘ sin ✓W , cW ⌘ cos ✓W , etc.
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The first term comes from 

The second and third term come from higher-order or from

genuine dim-6 operators. They can be complex if developed 

non-vanishing absorptive part.



Helicity Amplitude
A. Helicity amplitude

We first present the helicity amplitude for the process H ! Z(k1, ✏1)Z(k2, ✏2) !

f1(p1, �1)f̄1(p̄1, �̄1) f2(p2, �2)f̄2(p̄2, �̄2). Here, p1,2 and and p̄1,2 are four-momenta of the

fermions f1,2 and f̄1,2, respectively, with k1,2 = p1,2 + p̄1,2. And we denote the helicities of

f1,2 and f̄1,2 by �1,2 and �̄1,2. Depending on the helicities of the four final-state fermions,

the amplitude can be cast into the form
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using

� gµ⌫ +
kµk⌫
m2

=
X

�=±,0

✏⇤µ(k,�)✏⌫(k,�) . (5)

The helicity amplitude for the decay H ! Z(k1, ✏1)Z(k2, ✏2) in the rest frame of H is given

by

MH!ZZ
�1�2

=
gMW

c2W
h�1i ��1�2 (6)

with the reduced amplitudes h�1i defined by

h+i ⌘ g
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+ (1� ↵1 � ↵2)S
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H � i�1/2(1,↵1,↵2)P
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!
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p
↵1↵2 S
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where �(x, y, z) = x2 + y2 + z2 � 2xy � 2yz � 2zx and ↵i = k2
i /M

2
H . We note that the

contribution of g
HZZ

to the longitudinal amplitude h0i is enhanced by a factor M2
H/2M

2
Z in

the large MH limit.
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The longitudinal amplitude <0> is enhanced 

by a factor MH2/2 MZ2 in large MH limit. 



On the other hand, the helicity amplitude for the decay Z(k, ✏(k,�)) ! f(p, �)f̄(p̄, �̄) is

given by
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in the rest frame of the fermion pair. Note that the Z boson is moving to the positive z

direction in the H-rest frame, and ✓ and � denote the polar and azimuthal angles of the

momentum p of f in fermion-pair rest frame.

Collecting all the sub-amplitudes and neglecting the masses of the final-state fermions,

we obtain
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We observe the amplitude is receiving contributions from all the three helicity states h+i,

h�i, and h0i of the intermediate Z bosons, and the interferences among the di↵erent helicity

states lead to non-trivial angular distributions.
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Combining all sub-amplitudes
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with � = �1 + �2 and ⌘i = 2vfiafi/(v
2
fi
+ a2fi). The normalized 9 angular distributions are

given by 5

f1(✓1, ✓2,�) =
9

128⇡

h

(1 + c2✓1)(1 + c2✓2) + 4⌘1⌘2c✓1c✓2
i

,

f2(✓1, ✓2,�) =
9

128⇡

n

�2
h

⌘1c✓1(1 + c2✓2) + ⌘2c✓2(1 + c2✓1)
io

,

f3(✓1, ✓2,�) =
9

128⇡

h

4s2✓1s
2
✓2

i

,

f4(✓1, ✓2,�) =
9

128⇡
[4(c✓1c✓2 + ⌘1⌘2)s✓1s✓2c�] ,

f5(✓1, ✓2,�) =
9

128⇡
[�4(c✓1c✓2 + ⌘1⌘2)s✓1s✓2s�] ,

f6(✓1, ✓2,�) =
9

128⇡
[�4(⌘1c✓2 + ⌘2c✓1)s✓1s✓2c�] ,

f7(✓1, ✓2,�) =
9

128⇡
[4(⌘1c✓2 + ⌘2c✓1)s✓1s✓2s�] ,

f8(✓1, ✓2,�) =
9

128⇡

h

s2✓1s
2
✓2
c2�

i

,

f9(✓1, ✓2,�) =
9

128⇡

h

�s2✓1s
2
✓2
s2�

i

. (11)

Also, the 9 angular coe�cients C1�9, which are combinations of the reduced helicity ampli-
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C8 ⌘ 2<e [h+ih�i⇤] , C9 ⌘ 2=m [h+ih�i⇤] . (12)

Under CP and CPeT 6 transformations, the reduced H-Z-Z helicity amplitudes transform

as follows:

h�i CP$ h��i , h�i CPeT$ h��i⇤ . (13)

We note that the CP parities of C2, C5 ,C6 and C9 are negative (CP odd) implying that they

are non-vanishing only when {g
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HZZ

, SZZ
H } and PZZ

H exist simultaneously. Furthermore, the

5 Note that
R

fi(✓1, ✓2,�)dc✓1dc✓2d� = �i1 + �i3.
6

eT denotes the naive time-reversal transformation under which the the matrix element gets complex

conjugated.
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* C2, C5, C6, C9 are CP-odd and nonzero when gHZZ/SZZH  and PZZH  exist.  

* C2, C6, C7 are CPT~ odd and nonzero when induced by the absorptive  
parts of SZZH  and/or PZZH



CPeT parities of C2, C6, C7 are (CPeT odd), which implies that they can only be induced by

non-vanishing absorptive (or imaginary) parts of SZZ
H and/or PZZ

H .

C. Angular observables

The partial decay width of the process H ! ZZ ! 2`12`2 is given by
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All wi = 1  for on shell Z’s. We shall take the NWA. 



We can integrate any 2 of the angles     

In general, the angular coe�cients Ci depends of the momenta of Z bosons. When MH >

2MZ , the two decaying Z bosons are predominantly on-shell. In this case, one may have

wi = 1 by adopting the narrow-width approximation (NWA) for the intermediate Z bosons.

We therefore note that the deviation of the weight factor from unity measures the accuracy

of the approximation.

After integrating over any two of the angles ✓1, ✓2, and �, one may obtain the following

analytic expressions for the one-dimensional angular distributions in terms of the Z-pole

angular coe�cients C1�9:

1
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d�
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3

8
R1

⇣
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⇣
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First, we note that only C1,2,3 contribute to the c✓1,2 distributions. When SZZ
H and PZZ

H are

real or when their imaginary parts are negligible, C2 = 0 and the linear term is vanishing and

the c✓1,2 distributions are symmetric and parabolic. The coe�cients C4,5 and C8,9 together

with C1,3 in the denominators are contributing to the � distribution. For the decay ZZ ! 4`,

with ⌘` = 2v`a`/(v2` + a2`) = 0.150 for charged leptons, 9⇡⌘2`/128 ⇠ 0.005 and 1/8⇡ ⇠ 0.04,

the � distribution mostly varies as s2� and c2�. Finally, we note that the angular observables

R6,7 never appear in the one-dimensional angular distributions since C6,7 do not contribute

to them. To probe C6,7, one may need to study two-dimensional angular distributions such

as c✓1-� and c✓2-� distributions.

The angular observables R1,2,3 can be obtained by the c✓1,2 polynomial fitting to the

✓1,2 distributions, while R4,5,8,9 can be obtained either by the Fourier analysis of the �

distribution or by performing the fit to the distribution. We emphasize that it is important to

measure all the angular observables Ri since each of them has di↵erent physical implications.

A non-vanishing R2, for example, may imply the existence of New Physics particles with

mass less than MH/2; non-vanishing R5,9 may imply that there should be an extra source

of CP violation beyond the Cabibbo–Kobayashi–Maskawa (CKM) phase in the SM.
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to obtain 1-dim angular distributions

In general, the angular coe�cients Ci depends of the momenta of Z bosons. When MH >

2MZ , the two decaying Z bosons are predominantly on-shell. In this case, one may have

wi = 1 by adopting the narrow-width approximation (NWA) for the intermediate Z bosons.

We therefore note that the deviation of the weight factor from unity measures the accuracy

of the approximation.
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with C1,3 in the denominators are contributing to the � distribution. For the decay ZZ ! 4`,

with ⌘` = 2v`a`/(v2` + a2`) = 0.150 for charged leptons, 9⇡⌘2`/128 ⇠ 0.005 and 1/8⇡ ⇠ 0.04,

the � distribution mostly varies as s2� and c2�. Finally, we note that the angular observables

R6,7 never appear in the one-dimensional angular distributions since C6,7 do not contribute

to them. To probe C6,7, one may need to study two-dimensional angular distributions such

as c✓1-� and c✓2-� distributions.

The angular observables R1,2,3 can be obtained by the c✓1,2 polynomial fitting to the

✓1,2 distributions, while R4,5,8,9 can be obtained either by the Fourier analysis of the �

distribution or by performing the fit to the distribution. We emphasize that it is important to

measure all the angular observables Ri since each of them has di↵erent physical implications.

A non-vanishing R2, for example, may imply the existence of New Physics particles with

mass less than MH/2; non-vanishing R5,9 may imply that there should be an extra source

of CP violation beyond the Cabibbo–Kobayashi–Maskawa (CKM) phase in the SM.

9

* Only C1,2,3 contribute to cos-theta1,2 distributions. When  
SZZH  and PZZH are real, C2=0.


* R6,7 never appear in 1-dim distributions. We need 2-dim  
distributions, e.g.,  

In general, the angular coe�cients Ci depends of the momenta of Z bosons. When MH >

2MZ , the two decaying Z bosons are predominantly on-shell. In this case, one may have

wi = 1 by adopting the narrow-width approximation (NWA) for the intermediate Z bosons.

We therefore note that the deviation of the weight factor from unity measures the accuracy

of the approximation.
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R6,7 never appear in the one-dimensional angular distributions since C6,7 do not contribute

to them. To probe C6,7, one may need to study two-dimensional angular distributions such

as c✓1-� and c✓2-� distributions.

The angular observables R1,2,3 can be obtained by the c✓1,2 polynomial fitting to the

✓1,2 distributions, while R4,5,8,9 can be obtained either by the Fourier analysis of the �

distribution or by performing the fit to the distribution. We emphasize that it is important to

measure all the angular observables Ri since each of them has di↵erent physical implications.

A non-vanishing R2, for example, may imply the existence of New Physics particles with

mass less than MH/2; non-vanishing R5,9 may imply that there should be an extra source

of CP violation beyond the Cabibbo–Kobayashi–Maskawa (CKM) phase in the SM.
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* The angular observables R1,2,3 can be obtained from  
fitting to cos-theta1,2 distributions.  

* R4,5,8,9 can be obtained from Fourier analysis or fitt-  
ing to Ø distribution.  

* A non-vanishing R2 signals may imply new particles  
of mass < MH/2, such that develops absorptive part  
for SZZH  and PZZH .


* Measurements of R’s cannot determine the absolute  
 size of SZZH, PZZH and gHZZ.  

* We need to measure C1 + C3 in the partial width 

The measurements of the angular observables Ri alone, however, cannot determine the

absolute size of the couplings of g
HZZ

, SZZ
H , and PZZ

H . For this purpose one may need to

measure the quantity w1C1 + w3C3. From Eq. (21), using F = 2280, we have

� = 2.78⇥ 10�4 (w1C1 + w3C3) GeV

= �H
tot B(H ! ZZ ! 2`12`2) ' �H

tot B(H ! ZZ) [B(Z ! ``)]2 (22)

where �H
tot denotes the total decay width of the heavy Higgs boson H. Assuming informa-

tion on B(H ! ZZ) can be extracted from � · B measurements by considering several H

production and decay processes, and together with an independent measurement of the total

decay width, one may determine the combination of w1C1 + w3C3:

w1C1 + w3C3 = 4.1
�H
tot

GeV
B(H ! ZZ) (23)

where we use B(Z ! ``) = 3.3658⇥ 10�2.

III. NUMERICAL ANALYSIS

For numerical analysis we are taking MH = 260 GeV. First, this choice of MH ensures

two on-shell Z bosons, and slightly above the 2Mh decay threshold, such that B(H ! ZZ)

may be comparable to B(H ! hh, hZ). Simultaneously, it is far below the 2mt threshold,

and so B(H ! tt̄) = 0. Furthermore, the form factors SZZ
H and PZZ

H are most likely to be

real, because, with MH < 2mt, their imaginary (absorptive) parts are negligible unless there

exist light (lighter than MH/2 = 130 GeV) particles which significantly couple to H. This

significantly simplifies our numerical analysis and there are only 3 real parameters to vary.

Incidentally, we note that a heavy scalar with a mass around 270 GeV may explain some

excesses observed in LHC Run I data or those observed in measurements of the transverse

momentum of h, h production with top quarks, and searches for hh and V V resonances

[17, 18].

Bearing this in mind we consider the following 6 representative scenarios:

• S1 :
⇣

g
HZZ

, SZZ
H , PZZ

H

⌘

= (1, 0, 0)

• S2 :
⇣

g
HZZ

, SZZ
H , PZZ

H

⌘

= (0, 1, 0)

• S3 :
⇣

g
HZZ

, SZZ
H , PZZ

H

⌘

= (0, 0, 1)
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Numerical Analysis

• We used MH=260 GeV 


• B(H->ZZ, Zh, hh) are comparable, B(H->tt) = 0.


•  SZZH  and PZZH are real. Only 3 input parameters 
of couplings.  



TABLE I. The 6 scenarios considered and the 9 angular coe�cients at Z pole. Note that C2, C5,

C6, and C9 are CP-odd indicated by their minus(�) CP parities, see the first sign in the square

brackets. And when SZZ
H and PZZ

H are real as taken in our numerical study, the coe�cients C2,

C6 and C7 are identically vanishing indicated by their minus(�) CPeT parities, see the second sign

in the square brackets.

g
HZZ

SZZ
H PZZ

H C1[++] C2[��] C3[++] C4[++] C5[�+] C6[��] C7[+�] C8[++] C9[�+ ]

S1 1 0 0 2.00 0.00 9.39 �6.13 0.00 0.00 0.00 2.00 0.00

S2 0 1 0 1.14 0.00 0.0605 �0.371 0.00 0.00 0.00 1.14 0.00

S3 0 0 1 1.02 0.00 0.00 0.00 0.00 0.00 0.00 �1.02 0.00

S4 0 1 1 2.15 0.00 0.0605 �0.371 0.351 0.00 0.00 0.121 �2.15

S5 0 1 �1 2.15 0.00 0.0605 �0.371 �0.351 0.00 0.00 0.121 2.15

S6 0.32 1 1 1.39 0.00 0.540 0.638 �1.05 0.00 0.00 �0.639 �1.24

• S4 :
⇣

g
HZZ

, SZZ
H , PZZ

H

⌘

= (0, 1, 1)

• S5 :
⇣

g
HZZ

, SZZ
H , PZZ

H

⌘

= (0, 1,�1)

• S6 :
⇣

g
HZZ

, SZZ
H , PZZ

H

⌘

= (0.32, 1, 1)

In the first three scenarios of S1, S2, and S3, only one of the couplings is non-vanishing

and CP is conserved. In the scenarios of S4 and S5, CP is violated and the couplings SZZ
H

and PZZ
H take on opposite relative phases. In the scenario S6, all three couplings are non-

zero, with enhancement of the longitudinal component h0i of the amplitude for a heavier

Higgs boson, the chosen values for the three couplings contribute more or less equally to the

amplitude squared: see Eq. (7). Finally, we found that the weight factors lie between 0.99

and 1.02, and therefore we safely take w1�9 = 1 in our numerical study.

In Table I, we show the 9 angular coe�cients C1 � C9 for the 6 scenarios, together with

their CP and CPeT parities in the square brackets. With only the real component in the

form factors SZZ
H and PZZ

H , the coe�cients C2, C6 and C7 are identically vanishing in all

the scenarios, and C2, C5, C6 and C9 further vanish in the CP-conserving scenarios of S1,

S2, and S3. For S1, C3 is large due to the enhancement of the longitudinal component h0i

of the amplitude for a heavier Higgs boson. Since the longitudinal amplitude h0i = 0 in
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* S1,2,3 are CP conserving because one coupling is nonzero.

* S4,5 are CP violating.

* S6 : parameters are chosen s.t. they contribute equally to  

amplitude squared. <0> is enhanced for large MH.  



TABLE II. The 6 angular observables Ri = Ci/(C1 + C3) with i = 1, 3, 4, 5, 8, 9 taking w1�9 = 1

and the value of C1 + C3 for the 6 scenarios under consideration. The CP and CPeT parities of

each observable are shown in the square brackets.

g
HZZ

SZZ
H PZZ

H R1[++] R3[++] R4[++] R5[�+] R8[++] R9[�+] (C1 + C3)[++]

S1 1 0 0 0.176 0.824 �0.538 0.00 0.176 0.00 11.4

S2 0 1 0 0.950 0.0505 �0.310 0.00 0.945 0.00 1.20

S3 0 0 1 1.00 0.00 0.00 0.00 �1.00 0.00 1.02

S4 0 1 1 0.973 0.0273 �0.168 0.158 0.0547 �0.971 2.21

S5 0 1 �1 0.973 0.0273 �0.168 �0.158 0.0547 0.971 2.21

S6 0.32 1 1 0.721 0.280 0.330 �0.542 �0.331 �0.640 1.93

the S3 scenario, only C1 and C8 take on non-zero values: see Eq. (12). In the CP-violating

scenarios of S4, S5, and S6, all the coe�cients with plus (+) CPeT parity are non-vanishing.

Note that with g
HZZ

= 0 in S4 and S5 , the angular coe�cient C3 = |h0i|2 = 4(MZ/MH)4

is suppressed: see Eq. (7). All the non-vanishing coe�cients are comparable in the scenario

S6.

In Table II, we show the 6 non-vanishing angular observables involved in the one-

dimensional angular distributions under the assumption of real SZZ
H and PZZ

H , together with

the values of C1 + C3 for the 6 scenarios. The first and second signs in the square brackets

again denote the CP and CPeT parities, respectively. Taking these values we show the angu-

lar distributions obtained by the analytic expressions Eq. (20): see the solid lines in Figs. 1

and 2. For comparisons we superimpose the angular distributions generated according to

Eq. (9) as the solid dots.
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in scenario S1 because R1 ⌧ 2R3, while the distributions behave like (1 + c2✓1,2) with R1 �
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the sub-leading contributions from R4c� suppressed by ⌘2` : see Eq. (20). The smaller value
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In the CP-violating scenarios of S4 and S5, the cos ✓1,2 distribution behaves like (1 +
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FIG. 1. The normalized angular distributions (solid dots) generated according to the matrix element

in Eq. (9) with S1:
⇣

gHZZ , S
ZZ
H , PZZ

H

⌘

= (1, 0, 0) (upper), S2:
⇣

gHZZ , S
ZZ
H , PZZ

H

⌘

= (0, 1, 0) (mid-

dle), and S3:
⇣

gHZZ , S
ZZ
H , PZZ

H

⌘

= (0, 0, 1) (lower). The solid lines are drawn using the analytic

expressions for the angular distributions in Eq. (20) with w1�9 = 1.

c2✓1,2) with R1 � 2R3: see the upper left and middle left frames of Fig. 2. While in S6

with R1 slightly larger than 2R3, it still behaves as (1 + c2✓1,2) but its variation is much

smaller compared to the S4 and S5 scenarios due to the cancellation between the R1 and

R3 terms. The � distributions mostly behave according to R8c2� � R9s2� with the sub-

leading contributions from R4c� � R5s�. We observe that they are no longer symmetric
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FIG. 2. The normalized angular distributions (solid dots) generated according to the matrix ele-

ment in Eq. (9) with S4:
⇣

gHZZ , S
ZZ
H , PZZ

H

⌘

= (0, 1, 1) (upper), S5:
⇣

gHZZ , S
ZZ
H , PZZ

H

⌘

= (0, 1,�1)

(middle), and S6:
⇣

gHZZ , S
ZZ
H , PZZ

H

⌘

= (0.32, 1, 1) (lower). The solid lines are drawn using the

analytic expressions for the angular distributions in Eq. (20) with w1�9 = 1.

about � = 0 due to non-trivial phase shift induced by the CP violating terms of s2� and s�.

We observe the complete agreement between the angular distributions obtained by the

analytic expressions in Eq. (20) and those generated according to the helicity amplitude

Eq. (9), and therefore conclude that our analytic expressions provide an excellent framework

to extract the couplings g
HZZ

, SZZ
H , and PZZ

H and completely measure the properties of a
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FIG. 3. S6: The angular distributions from the pseudo dataset of Nevt = 104 events generated

with
q

k21,2 = MZ ± 4 GeV, � cos ✓ = 0.1 and �� = 0.1⇡. The results of fitting to the angular

distributions with Eq. (20) are shown in the (red) solid lines.

CP-mixed scalar boson H through the angular distributions.

Now we are going to illustrate how well one can measure the properties of the 260 GeV

Higgs by taking the example of scenario S6 with
⇣

g
HZZ

, SZZ
H , PZZ

H

⌘

= (0.32, 1, 1), in which

all three couplings play almost equal roles. For this purposes we generate a pseudo dataset

with the number of events Nevt = 104 in the range of
q

k2
1,2 = MZ ± 4 GeV by noting that

the current upper limit on �(gg ! H) · B(H ! ZZ) ' 1 pb for a 260 GeV Higgs boson at

95 % C.L. [15]:

�(gg ! H) · B(H ! ZZ) · 4[B(Z ! ``)]2 · ✏4` · L ' 104

where we naively take the 4-lepton e�ciency ✏4` ⇠ 1 7 and assume the HL-LHC with the

luminosity of L = 3/ab. Further, we assume the angular resolutions of � cos ✓ = 0.1 and

�� = 0.1⇡.

In Fig. 3, the histograms show the normalized cos ✓ (left) and � (right) distributions from

the pseudo dataset of Nevt = 104 events. Here the cos ✓ distribution is the combination of

the cos ✓1 and cos ✓2 distributions. One can obtain the angular observables R1,3 by fitting to

7 We find that ✏4` ⇠ (0.95)4 by requiring pT > 25(5) GeV for the leading (sub-leading) lepton with the

rapidity cut |⌘`| < 2.5.
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= (0.32, 1, 1), in which

all three couplings play almost equal roles. For this purposes we generate a pseudo dataset

with the number of events Nevt = 104 in the range of
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�(gg ! H) · B(H ! ZZ) · 4[B(Z ! ``)]2 · ✏4` · L ' 104

where we naively take the 4-lepton e�ciency ✏4` ⇠ 1 7 and assume the HL-LHC with the

luminosity of L = 3/ab. Further, we assume the angular resolutions of � cos ✓ = 0.1 and

�� = 0.1⇡.

In Fig. 3, the histograms show the normalized cos ✓ (left) and � (right) distributions from

the pseudo dataset of Nevt = 104 events. Here the cos ✓ distribution is the combination of

the cos ✓1 and cos ✓2 distributions. One can obtain the angular observables R1,3 by fitting to
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We take 104events in the following, and angular 
resolution of cos-theta = 0.1, Phi=0.1π.  
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= (0.32, 1, 1), in which

all three couplings play almost equal roles. For this purposes we generate a pseudo dataset
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1,2 = MZ ± 4 GeV by noting that

the current upper limit on �(gg ! H) · B(H ! ZZ) ' 1 pb for a 260 GeV Higgs boson at
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�(gg ! H) · B(H ! ZZ) · 4[B(Z ! ``)]2 · ✏4` · L ' 104

where we naively take the 4-lepton e�ciency ✏4` ⇠ 1 7 and assume the HL-LHC with the

luminosity of L = 3/ab. Further, we assume the angular resolutions of � cos ✓ = 0.1 and

�� = 0.1⇡.

In Fig. 3, the histograms show the normalized cos ✓ (left) and � (right) distributions from

the pseudo dataset of Nevt = 104 events. Here the cos ✓ distribution is the combination of

the cos ✓1 and cos ✓2 distributions. One can obtain the angular observables R1,3 by fitting to

7 We find that ✏4` ⇠ (0.95)4 by requiring pT > 25(5) GeV for the leading (sub-leading) lepton with the

rapidity cut |⌘`| < 2.5.

15

TABLE III. The input and output values of the 6 angular observables R1,3,4,5,8,9 involved in the

one-dimensional angular distributions under the assumption of real SZZ
H and PZZ

H . We have taken

the scenario S6:
⇣

gHZZ , S
ZZ
H , PZZ

H

⌘

= (0.32, 1, 1). The input values are the same as in Table II.

The output values have been obtained by fitting to the cos ✓1,2 and � distributions in Fig. 3. The

correlation for R1 and R3 is ⇢ = �0.805, while the correlations among others are negligible. For

C1 + C3, we simply assume 20 % error.

S6 R1[++] R3[++] R4[++] R5[�+] R8[++] R9[�+] (C1 + C3)[++]

Input 0.721 0.280 0.330 �0.542 �0.331 �0.640 1.93

Output (center value) 0.699 0.297 0.196 �0.832 �0.305 �0.564 1.93

Output (parabolic error) ±0.018 ±0.011 ±0.443 ±0.461 ±0.057 ±0.056 ±0.386

the cos ✓ distribution with the analytic expression for the 1/� d�/dc✓1,2 in Eq. (20). Note we

have fixed R2 = 0 in the fitting. We have found the strong correlation between the R1 and

R3 observables with the correlation coe�cient ⇢ = �0.805. The angular observables R4,5,8,9

can be obtained by the Fourier analysis of the � distribution. Explicitly, one may have

R4 =
128

9⇡2⌘2`

Z

c�

 

1

�

d�

d�

!

d� , R5 = � 128

9⇡2⌘2`

Z

s�

 

1

�

d�

d�

!

d� ,

R8 = 8
Z

c2�

 

1

�

d�

d�

!

d� , R9 = �8
Z

s2�

 

1

�

d�

d�

!

d� . (24)

The angular observables R4,5,8,9 can also be obtained by performing a fit to the � histogram

distribution with the analytic expression for the 1/� d�/d� in Eq. (20). We have checked

that R4,5,8,9 from the Fourier analysis and those from the fitting are very consistent. In our

numerical analysis, we use the fitted angular observables. The results of the fittings are

represented by the (red) solid lines in In Fig. 3.

The details of the fitting results are summarized in Table III as the output central values

together with the corresponding parabolic errors. We observe that the output central values

are within the 1- or 2-� ranges of the input values. Note that the CP violation is observed at

the 10-� level with R9 = �0.564± 0.056. While the observation through the R5 observable

is only at the 2-� level due to the ⌘2` suppression.
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Fit to the original inputs gHZZ, SZZH, PZZH
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FIG. 4. Upper: The confidence-level (CL) regions for scenario S6
⇣

gHZZ , S
ZZ
H , PZZ

H

⌘

= (0.32, 1, 1)

with ��2 = 2.3 (red), 5.99 (green), and 11.83 (blue) above the minimum, which correspond to

confidence levels of 68.3%, 95%, and 99.7%, respectively. The vertical and horizontal lines show

the best-fit values of
⇣

gHZZ , S
ZZ
H , PZZ

H

⌘best�fit
= (0.324, 0.980, 0.980). Lower: The scatter plots for

��2 versus gHZZ (left), ��2 versus PZZ
H (middle), and ��2 versus SZZ

H (left). The horizontal

lines are for the 68.3% (red), 95% (green), and 99.7% (blue) CL regions.

Now we are ready to carry out our ultimate target to extract the couplings g
HZZ

, SZZ
H ,

and PZZ
H from the 7 observables R1,3,4,5,8,9 and C1 +C3 by implementing a �2 analysis. We
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Best Fit


gHZZ=0.324±0.031


SZZH =0.980±0.11


PZZH =0.980±0.10


10% error for 

 104 events



The upper limit 

around 240-270 GeV 

is 0.5 pb, 

corresponding to 

about 3000 events 

at HL-LHC.


The uncertainty will

increases to 20%. 
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Summary

• The angular distributions of theta1,2 and Phi can be analysed 
and fitted to the observables Ri’s and then to Higgs couplings. 


• With 104 H -> ZZ -> 4l events one can determine the 
couplings gHZZ, SZZ

H and PZZ
H with 10% uncertainty. With 3000 

events uncertainty goes down to 20%.


• Appearance of C2 signals new particles with mass < MH/2 
running in the loop.


• One can also extend to 2-dim distributions to analyse other 
observables R6,7.


