Measuring properties of a Heavy Higgs boson in the $H \rightarrow ZZ \rightarrow 41$ decay

Jung Chang, KC, Jae Sik Lee, Chih-Ting Lu and Jubin Park arXiv: 1708.05583

Motivations

- The SM with one Higgs doublet is not natural. Another heavy scalar boson can appear soon.
- LHC searched for H -> ZZ -> 4l and there are some 2-3 sigma here and there.
- The decay H ->ZZ->4l involves a number of angles that one can investigate the CP properties of the boson.

Interactions of HZZ

$$\begin{split} i\mathcal{M}^{H\to ZZ} &\equiv i\frac{gM_W}{c_W^2} \ \Gamma_{\mu\nu}^{ZZ} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \\ &= i\frac{gM_W}{c_W^2} \bigg\{ g_{HZZ} \ \epsilon_1^* \cdot \epsilon_2^* + S_H^{ZZ}(s) \left[\frac{-2k_1 \cdot k_2}{s} \ \epsilon_1^* \cdot \epsilon_2^* \ + \ \frac{2}{s} \ k_1 \cdot \epsilon_2^* \ k_2 \cdot \epsilon_1^* \right] \\ &+ P_H^{ZZ}(s) \ \frac{2}{s} \left\langle \epsilon_1^* \epsilon_2^* k_1 k_2 \right\rangle \bigg\} \end{split}$$

The first term comes from $\mathcal{L} = \frac{gM_W}{2c_W^2} g_{_{HZZ}} Z_\mu Z^\mu H$

The second and third term come from higher-order or from genuine dim-6 operators. They can be complex if developed non-vanishing absorptive part.

Helicity Amplitude

 $H \to Z(k_1, \epsilon_1) Z(k_2, \epsilon_2) \to f_1(p_1, \sigma_1) \bar{f}_1(\bar{p}_1, \bar{\sigma}_1) f_2(p_2, \sigma_2) \bar{f}_2(\bar{p}_2, \bar{\sigma}_2).$

i

$$\mathcal{M}_{\sigma_{1}\bar{\sigma}_{1}:\sigma_{2}\bar{\sigma}_{2}} = \left(i\frac{gM_{W}}{c_{W}^{2}}\Gamma_{\mu\nu}^{ZZ}\right) \frac{-i\left(g^{\mu\rho} - \frac{k_{1}^{\mu}k_{1}^{\rho}}{M_{Z}^{2}}\right)}{k_{1}^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} \frac{-i\left(g^{\nu\sigma} - \frac{k_{2}^{\nu}k_{2}^{\sigma}}{M_{Z}^{2}}\right)}{k_{2}^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}}$$

$$\times \left[-i\frac{g}{c_{W}}\sum_{A=L,R}\bar{u}(p_{1},\sigma_{1})\gamma_{\rho}(v_{f_{1}} - Aa_{f_{1}})P_{A}v(\bar{p}_{1},\bar{\sigma}_{1})\right]$$

$$\times \left[-i\frac{g}{c_{W}}\sum_{B=L,R}\bar{u}(p_{2},\sigma_{2})\gamma_{\sigma}(v_{f_{2}} - Ba_{f_{2}})P_{B}v(\bar{p}_{2},\bar{\sigma}_{2})\right]$$

$$= i\sum_{\lambda_{1},\lambda_{2}}\mathcal{M}_{\lambda_{1}\lambda_{2}}^{H \to ZZ} \frac{1}{k_{1}^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} \frac{1}{k_{2}^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} \mathcal{M}_{\lambda_{1}:\sigma_{1}\bar{\sigma}_{1}}^{Z \to f_{1}\bar{f}_{1}}\mathcal{M}_{\lambda_{2}:\sigma_{2}\bar{\sigma}_{2}}^{Z \to f_{2}\bar{f}_{2}}$$

The helicity amplitude for the decay $H \to Z(k_1, \epsilon_1)Z(k_2, \epsilon_2)$ in the rest frame of H by

$$\mathcal{M}_{\lambda_1 \lambda_2}^{H \to ZZ} = \frac{g M_W}{c_W^2} \left\langle \lambda_1 \right\rangle \, \delta_{\lambda_1 \lambda_2}$$

with the reduced amplitudes $\langle \lambda_1 \rangle$ defined by

$$\begin{split} \langle + \rangle &\equiv g_{_{HZZ}} + \left(1 - \alpha_1 - \alpha_2\right) S_H^{ZZ} - i\lambda^{1/2} (1, \alpha_1, \alpha_2) P_H^{ZZ} \\ \langle - \rangle &\equiv g_{_{HZZ}} + \left(1 - \alpha_1 - \alpha_2\right) S_H^{ZZ} + i\lambda^{1/2} (1, \alpha_1, \alpha_2) P_H^{ZZ} \\ \langle 0 \rangle &\equiv g_{_{HZZ}} \left(\frac{1 - \alpha_1 - \alpha_2}{2\sqrt{\alpha_1 \alpha_2}}\right) - 2\sqrt{\alpha_1 \alpha_2} S_H^{ZZ} \,, \end{split}$$

 $\alpha_i = k_i^2 / M_H^2.$

The longitudinal amplitude <0> is enhanced by a factor $M_{\rm H}^2/2 M_Z^2$ in large $M_{\rm H}$ limit. helicity amplitude for the decay $Z(k, \epsilon(k, \lambda)) \to f(p, \sigma) \overline{f}(\overline{p}, \overline{\sigma})$ is

$$\mathcal{M}_{\lambda:\sigma\bar{\sigma}}^{Z\to f\bar{f}} = \begin{cases} -\frac{g}{c_W} \left[\sqrt{2}m_f v_f \ \lambda \sigma e^{-i(\sigma-\lambda)\phi} \ s_\theta \ \delta_{\sigma\bar{\sigma}} \right] \\ +\frac{\sqrt{k^2}}{\sqrt{2}} (v_f - \sigma\beta_f a_f) (\lambda c_\theta + \sigma) \ e^{i\lambda\phi} \ \delta_{\sigma-\bar{\sigma}} \end{bmatrix} & \text{for } \lambda = \pm \\ -\frac{g}{c_W} \left[2m_f v_f \ e^{-i\sigma\phi} \ (-\sigma c_\theta) \ \delta_{\sigma\bar{\sigma}} + \sqrt{k^2} (v_f - \sigma\beta_f a_f) s_\theta \ \delta_{\sigma-\bar{\sigma}} \right] & \text{for } \lambda = 0 \end{cases}$$

Combining all sub-amplitudes

$$\mathcal{M}_{\sigma_{1}\bar{\sigma}_{1}:\sigma_{2}\bar{\sigma}_{2}} = \frac{gM_{W}}{2c_{W}^{2}} \left(\frac{g}{c_{W}}\right)^{2} \frac{\sqrt{k_{1}^{2}}}{k_{1}^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} \frac{\sqrt{k_{2}^{2}}}{k_{2}^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} \times (v_{f_{1}} - \sigma_{1}a_{f_{1}})(v_{f_{2}} - \sigma_{2}a_{f_{2}}) \times \left[\langle + \rangle(c_{\theta_{1}} + \sigma_{1})(c_{\theta_{2}} + \sigma_{2})e^{i(\phi_{1} + \phi_{2})} + \langle - \rangle(-c_{\theta_{1}} + \sigma_{1})(-c_{\theta_{2}} + \sigma_{2})e^{-i(\phi_{1} + \phi_{2})} + 2\langle 0 \rangle s_{\theta_{1}}s_{\theta_{2}}\right] \delta_{\sigma_{1} - \bar{\sigma}_{1}}\delta_{\sigma_{2} - \bar{\sigma}_{2}}.$$

The amplitude squared can be written as a sum of independent combinations of angular variables:

$$\sum_{\sigma_1,\bar{\sigma}_1,\sigma_2,\bar{\sigma}_2} \left| \mathcal{M}_{\sigma_1\bar{\sigma}_1:\sigma_2\bar{\sigma}_2} \right|^2 = \left(\frac{gM_W}{c_W^2} \right)^2 \left(\frac{g}{c_W} \right)^4 \frac{k_1^2}{(k_1^2 - M_Z^2)^2 + M_Z^2\Gamma_Z^2} \frac{k_2^2}{(k_2^2 - M_Z^2)^2 + M_Z^2\Gamma_Z^2}$$

$$\times (v_{f_1}^2 + a_{f_1}^2)(v_{f_2}^2 + a_{f_2}^2) \frac{128\pi}{9} \sum_{i=1}^9 C_i f_i(\theta_1, \theta_2, \Phi)$$
(10)

$$\begin{split} f_{1}(\theta_{1},\theta_{2},\Phi) &= \frac{9}{128\pi} \left[(1+c_{\theta_{1}}^{2})(1+c_{\theta_{2}}^{2}) + 4\eta_{1}\eta_{2}c_{\theta_{1}}c_{\theta_{2}} \right], \\ f_{2}(\theta_{1},\theta_{2},\Phi) &= \frac{9}{128\pi} \left\{ -2 \left[\eta_{1}c_{\theta_{1}}(1+c_{\theta_{2}}^{2}) + \eta_{2}c_{\theta_{2}}(1+c_{\theta_{1}}^{2}) \right] \right\}, \\ f_{3}(\theta_{1},\theta_{2},\Phi) &= \frac{9}{128\pi} \left[4s_{\theta_{1}}^{2}s_{\theta_{2}}^{2} \right], \\ f_{4}(\theta_{1},\theta_{2},\Phi) &= \frac{9}{128\pi} \left[4(c_{\theta_{1}}c_{\theta_{2}} + \eta_{1}\eta_{2})s_{\theta_{1}}s_{\theta_{2}}c_{\Phi} \right], \\ f_{5}(\theta_{1},\theta_{2},\Phi) &= \frac{9}{128\pi} \left[-4(c_{\theta_{1}}c_{\theta_{2}} + \eta_{1}\eta_{2})s_{\theta_{1}}s_{\theta_{2}}c_{\Phi} \right], \\ f_{5}(\theta_{1},\theta_{2},\Phi) &= \frac{9}{128\pi} \left[-4(c_{\theta_{1}}c_{\theta_{2}} + \eta_{1}\eta_{2})s_{\theta_{1}}s_{\theta_{2}}c_{\Phi} \right], \\ f_{5}(\theta_{1},\theta_{2},\Phi) &= \frac{9}{128\pi} \left[-4(c_{\theta_{1}}c_{\theta_{2}} + \eta_{1}\eta_{2})s_{\theta_{1}}s_{\theta_{2}}s_{\Phi} \right], \end{split}$$

with $\Phi = \phi_1 + \phi_2$ and $\eta_i = 2v_{f_i}a_{f_i}/(v_{f_i}^2 + a_{f_i}^2)$.

Also, the 9 angular coefficients C_{1-9} , which are combinations of the reduced helicity amplitudes $\langle + \rangle$, $\langle - \rangle$, and $\langle 0 \rangle$, are defined as

$$C_{1} \equiv |\langle + \rangle|^{2} + |\langle - \rangle|^{2}, \quad C_{2} \equiv |\langle + \rangle|^{2} - |\langle - \rangle|^{2}, \quad C_{3} \equiv |\langle 0 \rangle|^{2},$$

$$C_{4} \equiv \Re e \left[\langle + \rangle \langle 0 \rangle^{*} + \langle - \rangle \langle 0 \rangle^{*} \right], \quad C_{5} \equiv \Im m \left[\langle + \rangle \langle 0 \rangle^{*} - \langle - \rangle \langle 0 \rangle^{*} \right],$$

$$C_{6} \equiv \Re e \left[\langle + \rangle \langle 0 \rangle^{*} - \langle - \rangle \langle 0 \rangle^{*} \right], \quad C_{7} \equiv \Im m \left[\langle + \rangle \langle 0 \rangle^{*} + \langle - \rangle \langle 0 \rangle^{*} \right],$$

$$C_{8} \equiv 2 \Re e \left[\langle + \rangle \langle - \rangle^{*} \right], \quad C_{9} \equiv 2 \Im m \left[\langle + \rangle \langle - \rangle^{*} \right]. \quad (12)$$

Under CP and CPT~ the reduced amplitudes transform like $\langle \lambda \rangle \stackrel{\text{CP}}{\leftrightarrow} \langle -\lambda \rangle, \qquad \langle \lambda \rangle \stackrel{\text{CPT}}{\leftrightarrow} \langle -\lambda \rangle^*.$

* C₂, C₅, C₆, C₉ are CP-odd and nonzero when g_{HZZ}/S^{ZZ}_{H} and P^{ZZ}_{H} exist.

* C₂, C₆, C₇ are CPT[~] odd and nonzero when induced by the absorptive parts of S^{ZZ}_{H} and/or P^{ZZ}_{H}

The partial decay width of the process $H \to ZZ \to 2\ell_1 2\ell_2$ is given by

$$d\Gamma = \frac{1}{2M_H} \left(\sum_{\sigma_1, \bar{\sigma}_1, \sigma_2, \bar{\sigma}_2} |\mathcal{M}_{\sigma_1 \bar{\sigma}_1: \sigma_2 \bar{\sigma}_2}|^2 \right) d\Phi_4$$

$$= \frac{1}{2^{13} \pi^6 M_H} \lambda^{1/2} (1, k_1^2 / M_H^2, k_2^2 / M_H^2) \sqrt{k_1^2} \sqrt{k_2^2}$$

$$\times \left(\sum_{\sigma_1, \bar{\sigma}_1, \sigma_2, \bar{\sigma}_2} |\mathcal{M}_{\sigma_1 \bar{\sigma}_1: \sigma_2 \bar{\sigma}_2}|^2 \right) d\sqrt{k_1^2} d\sqrt{k_2^2} dc_{\theta_1} dc_{\theta_2} d\Phi$$

After integrating over $\sqrt{k_1^2}$ and $\sqrt{k_2^2}$, we obtain

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}c_{\theta_1} \mathrm{d}c_{\theta_2} \mathrm{d}\Phi} = \sum_{i=1}^{9} \overline{R}_i f_i(\theta_1, \theta_2, \Phi)$$

with the 9 angular observables defined by

$$\overline{R}_i \equiv \frac{w_i \overline{C}_i}{w_1 \overline{C}_1 + w_3 \overline{C}_3}.$$

 $\overline{C}_i = C_i(k_1^2 = M_Z^2, k_2^2 = M_Z^2)$

All $w_i = 1$ for on shell Z's. We shall take the NWA.

We can integrate any 2 of the angles θ_1 , θ_2 , and Φ to obtain 1-dim angular distributions

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}c_{\theta_{1,2}}} = \frac{3}{8} \overline{R}_1 \left(1 + c_{\theta_{1,2}}^2 \right) - \frac{3\eta_{1,2}}{4} \overline{R}_2 \ c_{\theta_{1,2}} + \frac{3}{4} \overline{R}_3 \left(1 - c_{\theta_{1,2}}^2 \right) ,$$
$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\Phi} = \frac{1}{2\pi} + \frac{9\pi\eta_1\eta_2}{128} \left(\overline{R}_4 \ c_{\Phi} - \overline{R}_5 \ s_{\Phi} \right) + \frac{1}{8\pi} \left(\overline{R}_8 \ c_{2\Phi} - \overline{R}_9 \ s_{2\Phi} \right)$$

$$\Gamma = \frac{1}{2^6 3^2 \pi^5 M_H} \left(\frac{g M_W}{c_W^2}\right)^2 \left(\frac{g}{c_W}\right)^4 \left(v_{f_1}^2 + a_{f_1}^2\right) \left(v_{f_2}^2 + a_{f_2}^2\right) \left(w_1 \overline{C}_1 + w_3 \overline{C}_3\right) \mathcal{F}$$

- * Only $C_{1,2,3}$ contribute to cos-theta_{1,2} distributions. When S^{ZZ}_{H} and P^{ZZ}_{H} are real, $C_2=0$.
- * R_{6,7} never appear in 1-dim distributions. We need 2-dim distributions, e.g., c_{θ_1} - Φ and c_{θ_2} - Φ distributions.

- * The angular observables $R_{1,2,3}$ can be obtained from fitting to cos-theta_{1,2} distributions.
- * $R_{4,5,8,9}$ can be obtained from Fourier analysis or fitting to \emptyset distribution.
- * A non-vanishing R_2 signals may imply new particles of mass < $M_H/2$, such that develops absorptive part for S^{ZZ}_H and P^{ZZ}_H .
- * Measurements of R's cannot determine the absolute size of S^{ZZ}_{H} , P^{ZZ}_{H} and g_{HZZ} .
- * We need to measure $C_1 + C_3$ in the partial width

 $\Gamma = 2.78 \times 10^{-4} (w_1 \overline{C}_1 + w_3 \overline{C}_3) \text{ GeV}$ $= \Gamma_{\text{tot}}^H B(H \to ZZ \to 2\ell_1 2\ell_2) \simeq \Gamma_{\text{tot}}^H B(H \to ZZ) [B(Z \to \ell \ell)]^2$

Numerical Analysis

- We used $M_{H}=260 \text{ GeV}$
- $B(H \rightarrow ZZ, Zh, hh)$ are comparable, $B(H \rightarrow tt) = 0$.
- S^{ZZ}_{H} and P^{ZZ}_{H} are real. Only 3 input parameters of couplings.

	$g_{_{HZZ}}$	S_H^{ZZ}	P_H^{ZZ}	$\overline{C}_1[++]$	$\overline{C}_2[]$	$\overline{C}_3[++]$	$\overline{C}_4[++]$	$\overline{C}_5[-+]$	$\overline{C}_6[]$	$\overline{C}_7[+-]$	$\overline{C}_8[++]$	$\overline{C}_9[-+]$
$\mathbf{S1}$	1	0	0	2.00	0.00	9.39	-6.13	0.00	0.00	0.00	2.00	0.00
S2	0	1	0	1.14	0.00	0.0605	-0.371	0.00	0.00	0.00	1.14	0.00
S3	0	0	1	1.02	0.00	0.00	0.00	0.00	0.00	0.00	-1.02	0.00
$\mathbf{S4}$	0	1	1	2.15	0.00	0.0605	-0.371	0.351	0.00	0.00	0.121	-2.15
$\mathbf{S5}$	0	1	-1	2.15	0.00	0.0605	-0.371	-0.351	0.00	0.00	0.121	2.15
S6	0.32	1	1	1.39	0.00	0.540	0.638	-1.05	0.00	0.00	-0.639	-1.24

- * $S_{1,2,3}$ are CP conserving because one coupling is nonzero.
- * S_{4,5} are CP violating.
- * S_6 : parameters are chosen s.t. they contribute equally to amplitude squared. <0> is enhanced for large M_{H_1}

Non-vanishing R's

	$g_{_{HZZ}}$	S_H^{ZZ}	P_H^{ZZ}	$\overline{R}_1[++]$	$\overline{R}_3[++]$	$\overline{R}_4[++]$	$\overline{R}_5[-+]$	$\overline{R}_8[++]$	$\overline{R}_9[-+]$	$(\overline{C}_1 + \overline{C}_3)[++]$
S1	1	0	0	0.176	0.824	-0.538	0.00	0.176	0.00	11.4
S2	0	1	0	0.950	0.0505	-0.310	0.00	0.945	0.00	1.20
S 3	0	0	1	1.00	0.00	0.00	0.00	-1.00	0.00	1.02
$\mathbf{S4}$	0	1	1	0.973	0.0273	-0.168	0.158	0.0547	-0.971	2.21
S 5	0	1	-1	0.973	0.0273	-0.168	-0.158	0.0547	0.971	2.21
S6	0.32	1	1	0.721	0.280	0.330	-0.542	-0.331	-0.640	1.93

Illustrate the measurement in S6

S6 with $(g_{HZZ}, S_H^{ZZ}, P_H^{ZZ}) = (0.32, 1, 1)$

Current upper limit: $\sigma(gg \to H) \cdot B(H \to ZZ) \simeq 1$ pb for a 260 GeV Higgs boson

 $\sigma(gg \to H) \cdot B(H \to ZZ) \cdot 4[B(Z \to \ell\ell)]^2 \cdot \epsilon_{4\ell} \cdot \mathcal{L} \simeq 10^4$

We take 10^4 events in the following, and angular resolution of cos-theta = 0.1, Phi=0.1 π .

S6	$\overline{R}_1[++]$	$\overline{R}_3[++]$	$\overline{R}_4[++]$	$\overline{R}_{5}[-+]$	$\overline{R}_8[++]$	$\overline{R}_9[-+]$	$(\overline{C}_1 + \overline{C}_3)[++]$
Input	0.721	0.280	0.330	-0.542	-0.331	-0.640	1.93
Output (center value)	0.699	0.297	0.196	-0.832	-0.305	-0.564	1.93
Output (parabolic error)	± 0.018	± 0.011	± 0.443	± 0.461	± 0.057	± 0.056	± 0.386

 \overline{R}_1 and \overline{R}_3 is $\rho = -0.805$,

Fit to the original inputs g_{HZZ} , S^{ZZ}_{H} , P^{ZZ}_{H}

ATLAS-CONF-2017-058

The upper limit around 240–270 GeV is 0.5 pb, corresponding to about 3000 events at HL-LHC.

The uncertainty will increases to 20%.

Summary

- The angular distributions of theta_{1,2} and Phi can be analysed and fitted to the observables R_i 's and then to Higgs couplings.
- With 10^4 H -> ZZ -> 4l events one can determine the couplings g_{HZZ} , S^{ZZ}_{H} and P^{ZZ}_{H} with 10% uncertainty. With 3000 events uncertainty goes down to 20%.
- Appearance of C_2 signals new particles with mass < $M_H/2$ running in the loop.
- One can also extend to 2-dim distributions to analyse other observables R_{6,7}.