Recent SM and BSM Higgs Results from LHC

Stathes Paganis (National Taiwan University) Energy Frontier in PP, NTU, 29-9-2017

Outline

- Introduction
- New SM Higgs measurements: a quick tour
- Searches for heavy Higgs
- Searches for BSM physics with Higgs in the final state
- Vector Boson Fusion reloaded

LHC / HL-LHC Plan

2017 and 2018 will run at 13TeV. Expect 45/fb per year, until the start of LS3.

http://hilumilhc.web.cern.ch/about/hl-lhc-project

Data Collected in Run-2

CMS Integrated Luminosity, pp, 2016, $\sqrt{s} =$ 13 TeV

At 13TeV collected **38.27** fb⁻¹ (2016) and 3.8 fb⁻¹ (2015). Thanks to the amazing machine performance.

SM Higgs production+decay modes

ATLAS-CMS Higgs→4I at 13TeV

ATLAS-CMS Higgs $\rightarrow \gamma \gamma$ at 13TeV

Both experiments see the Higgs signal

80-110 GeV X $\rightarrow \gamma\gamma$ at 8/13TeV

September 2017 CMS-PAS-HIG-17-013

Run 2: Production Modes

ATLAS Higgs→bb at 13TeV

$$\mu = 1.3^{+0.46}_{-0.40}$$

With all 7, 8 and 13 TeV data 3.6σ (ATLAS-CONF-2017-041)

CMS Higgs→bb at 13TeV

CMS PAS HIG-16-044

CMS Higgs→ττ at 13TeV

29-Sept-2017

Aug-1-2017 arXiv:1708.00373 [hep-ex]. 12

ttH channel to multileptons CMS

Reconstruct the H-potential: $HH \rightarrow bb\gamma\gamma$

29-Sept-2017

BSM particles.

Identification of (b-quark) jets

- b-jets reconstructed with anti-k_T algorithm
- two categories:
 - "resolved" R=0.4

- "boosted":
- R=1.0 with two R=0.2 b-tagged track-jets(ATLAS bbbb),
- R=0.8 and contains two "resolved" jets (CMS bbbb, bbττ)

(Selected) High mass Higgs searches

BSM Higgs data interpretations

So far 125GeV scalar:

- Consistent with the SM Higgs (albeit coupling errors large).
- \succ Large number of models beyond the SM:
 - Some commonly used for LHC data interpretation listed here.

2-Higgs Doublet Model (2HDM)	 2-Higgs Doublet Model + S 2HDM extended by 1 complex SU(2)_L
• 2 doublets Φ_1 , Φ_2 , 5 bosons :	singlet field
 2 charged scalars: H[±] 	 Only couples to 2 Higgs fields (no
 2 neutral scalars: h (often 125GeV), H 	direct Yukawa couplings)
 1 neutral pseudoscalar: A 	 2 more bosons: 1 CP-odd; 1 CP-even
 Free parameters (tree level): 	 Special case: NMSSM
 m_A; tanβ=ratio of the two vev's. 	
 Type I: q & lep only couple to 2nd doublet 	Higgs triplets
• Type II : up-(down-)type couple to $\Phi_2(\Phi_1)$	 HTM: 7 bosons, including H^{±±}
	 Georgi-Machacek model.

Heavy $X \rightarrow \gamma \gamma$ at 13TeV

ATLAS (arXiv:1707.04147) 36.7fb⁻¹ 13TeV CMS EXO-16-027 16.2fb⁻¹ 13TeV

ATLAS excesses in 13TeV-only: 300GeV: ~2σ 730GeV: ~1.5σ 1.1TeV : ~1.1σ

CMS has a few 2σ excesses (however less luminosity)

ATLAS-CMS h→4l at 13TeV

ATLAS has analyzed the full data set: > 3σ excesses in 4lepton channel (no neutrinos):

~240GeV and ~710GeV.

CMS has 2σ excess at ~300GeV

2HDM limits with h→4l at 13TeV ATLAS-CONF-2017-058

Cross section limits interpreted in the two-Higgs doublet model.

Singly- doubly- charged Higgs

Channel	Limit in MH	Luminosity	Production+FS	Paper
H±→WZ 13TeV	300GeV-2TeV	15.2 fb ⁻¹	VBF II√I	CMS-HIG-16-027
H⁺ → tb 13TeV	300GeV-1TeV	12.9 fb ⁻¹	Assoc. with top blv(b)	ATLAS- CONF-2016-089
H⁺→τν 13TeV	80GeV-160GeV 200GeV-2TeV	14.7 fb ⁻¹ 12.9 fb ⁻¹	Decay of top Assoc. with top Hadronic	ATLAS- CONF-2016-088 CMS-HIG-16-031
H⁺→cb 8TeV	80GeV-150TeV	19.7 fb ⁻¹	Decay of top Semi-lept., (cbb) (lvb)	CMS-HIG-16-030
H±→cs 8TeV	80GeV-160TeV	19.7 fb ⁻¹	Decay of top Semi-lept., (csb) (lvb)	CMS-HIG-13-035 ATLAS- arXiv1302.3694
H ^{±±} →I [±] I [±] 13TeV	Depends on BR 900GeV	36.1 fb ⁻¹	γ/Z , pair production	ATLAS- CONF-2017-053
Φ ⁺⁺ Φ &Φ ^{±±} Φ ^{-/+} 13TeV	Depends on FS/BR ~800GeV	12.9 fb ⁻¹	W,γ/Z, decays	CMS-HIG-16-036

CMS high- $P_T H \rightarrow bb$

CMS-HIG-17-010

P_T>450 GeV 35.9 fb⁻¹ (13 TeV) 8000 Events / 7 GeV 35.9 fb⁻¹ (13 TeV) CMS 450 < p₁ < 1000 GeV n z 16 3 Z -2 $\Delta \log L(data)$ 7000 double-b tagger Best fit CMS - · - · · †† passing region 🛧 SM expected 14 ---- Multijet 6000 2.5 68% CL Total background --- 95% CL 12 H(bb) 5000 Data 2 10 4000 3000 1.5 8 2000 6 1000 4 0.5 0 2 – multijet – t<u>f</u> 10 0_4 ^{_}0 5 -2 σ_{Data} 2 6 8 0 4 μ_{H} Ω Data --540) 180 20 m_{sp} (GeV) 80 100 120 140 160 60 200

⁽SD: soft drop algorithm)

Looking for BSM with Higgs in the FS

Z' model

- An additional U(1)' symmetry are present in several BSM models → Z'
 - GUT, Little Higgs, Extra Dimensions

- Leptonic decays $Z' \rightarrow I^+I^-$ exclude Z' up to 4TeV.
 - In certain models we have baryonic Z'_B (leptophobic)

- In certain models, Z' links dark and visible sectors
 - Searches for $Z' \rightarrow Higgs + MET$

Heavy Vector Triplet model

- New heavy vectors are present in several BSM models.
 - Composite Higgs, Little Higgs, ...

- HVT is a simplified Lagrangian that couples fermions, the Higgs and weak gauge bosons to a spin-1 triplet.
 - Makes easier the comparison between theory and experiments.
 - HVT couplings to H/W/fermions can be constrained.

- Direct search of these $V' \rightarrow Higgs + W/Z$
 - Currently analyses probing $qq \rightarrow V'$ production

ATLAS Boosted V + $H \rightarrow bb$

CMS Boosted V + $H \rightarrow bb$

CMS-PAS-B2G-17-002

Excess at about 2.7TeV but at 3TeV no excess is observed

Observed exclusion in the HVT parameter plane $[g_V c_H, g^2 c_F/g_V]$ for three different resonance masses (1.5, 2.0, and 3.0 TeV). The parameter g_V represents the coupling strength of the new interaction, c_H the coupling between the HVT bosons and the Higgs boson and longitudinally polarized SM vector bosons, and c_F the coupling between the heavy vector bosons and the SM fermions. The gray shaded areas correspond to the region where the resonance natural width is predicted to be larger than the typical experimental resolution (4%) and thus the narrow-width approximation does not apply.

How about VBF?

VBF scalar/Vector \rightarrow WZ

5-July ATLAS-CONF-2017-051

ATLAS has searched in the VBF mode for fermiophobic heavy scalars or vectors.

Note that (as far as I know) there is no such analysis in \rightarrow HV final state.

CMS: performed WZ VBF leptonic search but with less 15.2fb-1 (CMS-HIG-16-027)

Run 2: VBF production

VBF Higgs signal yield

Epilogue: new data arrived!

CMS Integrated Luminosity, pp, 2017, $\sqrt{s} = 13$ TeV Data included from 2017-05-23 14:32 to 2017-09-27 14:09 UTC 30 30 Total Integrated Luminosity (${
m fb}^{-1}$) LHC Delivered: 26.33 fb^{-1} CMS Recorded: 22.90 fb^{-1} 25 25 **CMS** Online Luminosity 20 20 15 15 10 10 5 5 n Date (UTC)

The future (Phase 2, 2025): High Granularity Calorimeter

Taiwanese Investment:

- R&D, TestBeams
- Module Construction
- EM/Jet Calibration/ID
- Physics (e.g. VBF)

Backup

Summary: B2G results from CMS

[¢]model-independent

Phenomenological Lagrangian

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0})$$

+ $i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a}$
+ $\frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu\nu a} V_{\mu}^{b} V_{\nu}^{c}$

Weakly coupled model

Strongly coupled model

$$g_V \text{ typical strength of V interactions}$$

$$g_V \sim g \sim 1 \qquad \qquad 1 < g_V \leq 4\pi$$

$$c_i \text{ dimensionless coefficients}$$

$$c_H \sim -g^2/g_V^2 \text{ and } c_F \sim 1 \qquad \qquad c_H \sim c_F \sim 1$$

Andrea Thamm

Phenomenological Lagrangian

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0})$$

+ $i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a}$
+ $\frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu\nu a} V_{\mu}^{b} V_{\nu}^{c}$

Coupling to SM Vectors

Coupling to SM fermions $J_F^{\mu \ a} = \sum_{f} \overline{f}_L \gamma^{\mu} \tau^a f_L$ f V_{μ} $c_F V \cdot J_F \rightarrow c_l V \cdot J_l + c_q V \cdot J_q + c_3 V \cdot J_3$

Andrea Thamm

How about VBF?

What if an excess (or deficit) is observed in the data?

Interest in models in which heavy new states are VBF produced and decay to final states including the 125GeV Higgs

Run 1 combination JHEP 08 (2016) 045

Production process	Measured significance (σ)	Expected significance (σ)
VBF	5.4	4.6
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
$H \to \tau \tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

 Combination of ATLAS and CMS measurements leads to a higher than 5 sigma observation of the VBF production process and the H→ττ decay channel.

LHC future

- LHC Run 2 will continue in 2017/2018 at 13 TeV
- Prospects for 2017
 - Changed a magnet in sector 1–2 during EYETS
 - SPS new internal beam dump (limit on no. bunches)
 - Aim for 1.7 to 1.8 10³⁴ cm⁻¹s⁻¹ (inner triplet cooling limit?)
 - 5 TeV pp reference run to be scheduled (2017/2018)
- Goal for 2017 and 2018
 - 45/fb per year with ~50% availability of stable beams
- LS2 injector upgrade
 - Total of 300 /fb before LS3
- LS3 HL-LHC "phase 2 upgrades"
 - Aiming for ten times more luminosity

New W mass measurement

Closure tests; comparison of W+,W-,e,μ, p_T fit or m_T fit

CMS Xiao Meng

HH production

- SM: κ_t and κ_{λ} induced diagrams interfere destructively, σ_{SM} small (~33.5 fb)
 - sensitive to the anomalous couplings κ_t, κ_λ, c₂, c₂, c_g ⇔ non-resonant spectrum testing anomalous couplings
- Predicted by many theories: X->HH ➡ resonant search

 $\sigma_{\rm HH}/\sigma_{\rm SM} \leq 28~(25~{\rm exp})$

Higgs Decay Channels

Decay mode	Branching fraction [%]
$H \rightarrow bb$	57.5 ± 1.9
$H \to WW$	21.6 ± 0.9
$H \rightarrow gg$	8.56 ± 0.86
$H \to \tau \tau$	6.30 ± 0.36
$H \rightarrow cc$	2.90 ± 0.35
$H \rightarrow ZZ$	2.67 ± 0.11
$H ightarrow \gamma \gamma$	0.228 ± 0.011
$H \rightarrow Z\gamma$	0.155 ± 0.014
$H \rightarrow \mu \mu$	0.022 ± 0.001

 $H \rightarrow gg$, cc, $Z\gamma$ not included in the measurement but their contribution is included in the total width.

Strengths/Couplings

Signal Strengths

for a specific process $i \rightarrow H \rightarrow f$

$$\mu_{i} = \frac{\sigma_{i}}{\left(\sigma_{i}\right)_{SM}} \quad \text{and} \quad \mu^{f} = \frac{B^{f}}{\left(B^{f}\right)_{SM}}$$
$$\mu_{i}^{f} = \mu_{i} \cdot \mu^{f}$$

Coupling Modifiers

$$\kappa_j^2 = \sigma_j / \sigma_j^{SM}$$
 or $\kappa_j^2 = \Gamma^j / \Gamma_{SM}^j$

JHEP 08 (2016) 045