

### **CEPC-SppC Progress Status and Perspectives**

J. Gao

#### **Institute of High Energy Physics**

Beijing, CAS

#### Energy Frontier in Particle Physics: LHC and Future Colliders 29 September, 2017, NTU, Taibei, Taiwan





#### Contents

- CEPC goals and option studies
- CEPC baseline and alternative options
- CEPC baseline study progress status
- CEPC MDI
- CEPC accelerator hardware R&D progresses
- SppC progresses status
- Other important issues
- Conclusions

# **Physics goals of CEPC-SppC**

- Electron-positron collider(90, 250 GeV)
  - Higgs Factory (10<sup>6</sup> Higgs) :
    - Precision study of Higgs(m<sub>H</sub>, J<sup>PC</sup>, couplings), Similar & complementary to ILC
    - Looking for hints of new physics
  - Z & W factory (10<sup>10</sup> Z<sup>0</sup>) :
    - precision test of SM
    - Rare decays ?
  - Flavor factory: b, c,  $\tau$  and QCD studies

## Proton-proton collider(~100 TeV)

- Directly search for new physics beyond SM
- Precision test of SM
  - e.g., h<sup>3</sup> & h<sup>4</sup> couplings

Precision measurement + searches: Complementary with each other !

#### **CEPC Design – Higgs Parameters**

| Parameter             | Design Goal    |
|-----------------------|----------------|
| Particles             | e+, e-         |
| Center of mass energy | 2*120 GeV      |
| Luminosity (peak)     | >2*10^34/cm^2s |
| No. of IPs            | 2              |

#### **CEPC Design – Z-pole Parameters**

| Parameter                    | Design Goal                                    |
|------------------------------|------------------------------------------------|
| Particles                    | e+, e-                                         |
| Center of mass energy        | 2*45.5 GeV                                     |
| Integrated luminosity (peak) | >10^34/cm^2s                                   |
| No. of IPs                   | 2                                              |
| Polarization                 | to be considered in the second round of design |

#### **CEPC-SPPC Timeline (preliminary and ideal)**



# **CEPC Organization**



#### CEPC Funding

#### **HEP** seed money

#### 11 M RMB/3 years (2015-2017)

| R&D Funding - NSFC                         | creasing su<br>projects (2 | opport for<br>015); 7 p | r CEPC D+RDby NSFC<br>rojects(2016) |
|--------------------------------------------|----------------------------|-------------------------|-------------------------------------|
| CEPC相关基金名称(2015-2016)                      | 基金类型                       | 负责人                     | 承担单位                                |
| 高精度气体径迹探潮器及激光校正的研究 (2015)                  | 重点基金                       | 李玉兰/<br>陈元柏             | 清华大学/ Tsinghua<br>高能物理研究所 IHEP      |
| 成像型电磁量能器关键技术研究(2016)                       | 重点基金                       | 刘树彬                     | 中国科技大学 USTC                         |
| CEPC局部双环对撞区挡板系统设计及螺线管场补偿<br>(2016)         | 面上基金                       | 自莎                      | 高能物理研究所                             |
| 用于项点探测器的高分辨,低功耗SOI像素芯片的<br>若干关键问题的研究(2015) | 面上基金                       | 卢云鹏                     | 高能物理研究所                             |
| 基于粒子流算法的电磁量能器性能研究 (2016)                   | 面上基金                       | 王志刚                     | 高能物理研究所                             |
| 基于THGEM探测器的数字量能器的研究(2015)                  | 面上基金                       | 俞伯祥                     | 高能物理研究所                             |
| 高粒度量能器上的通用粒子流算法开发[2016]                    | 面上基金                       | 阮曼奇                     | 高能物理研究所 >                           |
| 正离子反馈连续抑制型气体探测器的实验研究<br>(2016)             | 面上基金                       | 祁辉荣                     | 高能物理研究所                             |
| CEPC对撞区最终聚焦系统的设计研究(2015)                   | 青年基金                       | 王逗                      | 高能物理研究所                             |
| 利用耗尽型CPS提高项点探测器空间分辨结度的研究 (2016)            | 青年基金                       | 周扬                      | 高能物理研究所                             |
| 关于CEPC动力学孔径研究(2016)                        | 青年基金                       | 王毅伟                     | 高能物理研究所                             |

#### 国家重点研发计划 FY 2016 项目预申报书

#### Ministry of Science and Technology Requested 45M RMB; 36M RMB approved

| 項目名称:           | 高能环形正负电子对撞机相关的物理和关键技<br>术预研究 |
|-----------------|------------------------------|
| 所属专项:           | 大科学装置前沿研究                    |
| 指南方向:           | 新一代粒子加速器和探测器关键技术和方法的<br>预先研究 |
| 推荐单位:           | 教育部                          |
| 申报单位: (公章)      | 清华大学                         |
| <b>百日台書</b> i . | 宣廣中                          |

60M RMB CAS-Beijing fund, talent program

\*500M RMB Beijing fund (light source)

ear 2017 funding request (45M) to MOST and other agencies under preparation

funding needs for carrying out CEPC design and R&D should be fully met by end of 2018

#### **CEPC four options towards CDR**



Since May 2016

#### Since Nov 2016<sup>8</sup>

### **Machine option luminosity potentials**



#### **CEPC Luminosity vs circumference**



\* Fabiola Gianotti, Future Circular ColliderDesign Study, ICFA meeting, J-PARC, 25-2-2016.

#### Framework for the CEPC Conceptual Design Report (2017年1月14日)

1) The baseline CEPC accelerator is a 100km Double Ring configuration of the circumference of 100km with shared SCRF single beam line for electron and positron (this scheme is refered as Hybrid Double Ring or Fully Partial Double Ring design)

2) The booster has the same circumference as main collider ring in the same tunnel with injection energy of 10GeV

- 3) The injection lianc exit energy for electron and positron is 10GeV
- 4) There are two IPs
- 5) The full crossing angle is 30mrad with L\*=1.5m (changed to 2.2m now)
- 6) The SRF acelerator system for Higgs and Z-pole operator are independent from each other

7) The CEPC baseline design is to reach the luminosity higher than 2\*10^34/cm^2s at Higgs energy with ~30MW synchrotron radiation power per beam and the luminosity high than 10^34/cm^2s for Z-pole energy

6) The Advanced Partial Double Ring Scheme with 8 partial double ring regions is defined as CEPC Alternative Scheme with the aim of reducing the construction cost and the efforts to study the posible solution to the sawtooth and beamloading effetcts

7) SppC is located the in same tunnel as CEPC simultaneously, with two IPs, and CEPC and SppC could be operated a the same time in principle.

#### **CEPC two shcemes towards CDR**



#### CEPC Advanced Partial Double Ring Option II



**CEPC Baseline Design** 

Better performance for Higgs and Z compared with alternative scheme, without bottle neck problems, but with higher cost

#### **CEPC Alternative Design**

Lower cost and reaching the fundamental requirement for Higgs and Z luminosities, under the condition that sawtooth and beam loading effects be solved

# http://cepc.ihep.ac.cn



#### CEPC CDR will be completed at the end of 2017

# **CEPC Accelerator Chain**





# Parameters for CEPC double ring (20170306-100km\_2mmβy, D. Wang)

|                                                                    | Pre-CDR     | tt          | Higgs              | W            | z            |
|--------------------------------------------------------------------|-------------|-------------|--------------------|--------------|--------------|
| Number of IPs                                                      | 2           | 2           | 2                  | 2            | 2            |
| Energy (GeV)                                                       | 120         | 175         | 120                | 80           | 45.5         |
| Circumference (km)                                                 | 54          | 100         | 100                | 100          | 100          |
| SR loss/turn (GeV)                                                 | 3.1         | 7.55        | 1.67               | 0.33         | 0.034        |
| Half crossing angle (mrad)                                         | 0           | 16.5        | 16.5               | 16.5         | 16.5         |
| Piwinski angle                                                     | 0           | 1.6         | 3.19               | 5.69         | 4.29         |
| $N_e$ /bunch (10 <sup>11</sup> )                                   | 3.79        | 1.41        | 0.968              | 0.365        | 0.455        |
| Bunch number                                                       | 50          | 98          | 644 (412)          | 5534         | 21300        |
| Beam current (mA)                                                  | 16.6        | 6.64        | 29.97 (19.2)       | 97.1         | 465.8        |
| SR power /beam (MW)                                                | 51.7        | 50          | 50 (32)            | 32           | 16.1         |
| Bending radius (km)                                                | 6.1         | 11          | 11                 | 11           | 11           |
| Momentum compaction (10 <sup>-5</sup> )                            | 3.4         | 1.3         | 1.14               | 1.14         | 4.49         |
| $\beta_{IP} x/y (m)$                                               | 0.8/0.0012  | 0.2/0.002   | 0.171/0.002        | 0.171 /0.002 | 0.16/0.002   |
| Emittance x/y (nm)                                                 | 6.12/0.018  | 3.19/0.0097 | 1.31/0.004         | 0.57/0.0017  | 1.48/0.0078  |
| Transverse $\sigma_{IP}$ (um)                                      | 69.97/0.15  | 25.3/0.14   | 15.0/0.089         | 9.9/0.059    | 15.4/0.125   |
| $\xi_x/\xi_y/\mathrm{IP}$                                          | 0.118/0.083 | 0.016/0.055 | 0.013/0.083        | 0.0055/0.062 | 0.008/0.054  |
| RF Phase (degree)                                                  | 153.0       | 122.2       | 128                | 126.9        | 165.3        |
| $V_{RF}(\text{GV})$                                                | 6.87        | 8.92        | 2.1                | 0.41         | 0.14         |
| $f_{RF}$ (MHz) (harmonic)                                          | 650         | 650         | 650                | 650 (217800) | 650 (217800) |
| <i>Nature</i> $\sigma_{z}$ (mm)                                    | 2.14        | 2.62        | 2.72               | 3.37         | 3.97         |
| Total $\sigma_z$ (mm)                                              | 2.65        | 2.7         | 2.9                | 3.4          | 4.0          |
| HOM power/cavity (kw)                                              | 3.6 (5cell) | 0.53(5cell) | 0.64(2cell) (0.41) | 0.36(2cell)  | 1.99(2cell)  |
| Energy spread (%)                                                  | 0.13        | 0.14        | 0.098              | 0.065        | 0.037        |
| Energy acceptance (%)                                              | 2           | 2           | 1.5                |              |              |
| Energy acceptance by RF (%)                                        | 6           | 2.6         | 2.1                | 1.1          | 1.1          |
| $n_{\nu}$                                                          | 0.23        | 0.23        | 0.26               | 0.15         | 0.12         |
| Life time due to                                                   | 47          | 50          | 52                 |              |              |
| beamstrahlung_cal (minute)                                         |             |             |                    |              |              |
| <i>F</i> (hour glass)                                              | 0.68        | 0.89        | 0.96               | 0.98         | 0.96         |
| $L_{max}$ /IP (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 2.04        | 0.62        | 3.13 (2.0)         | 5.15         | 11.9         |

# **Beam-beam simulation-100km (H-HL)**

zhangy@ihep.ac.cn

• 161202-100km-2mm-h-highlum, (0.51,0.55,0.037)



# **CEPC** parameters toward CDR

|                                                         | Higgs        | Z-low lum.    | Z-high lum.                |
|---------------------------------------------------------|--------------|---------------|----------------------------|
| Number of IPs                                           | 2            | 2             | 2                          |
| Energy (GeV)                                            | 120          | 45.5          | 45.5                       |
| Circumference (km)                                      | 100          | 100           | 100                        |
| SR loss/turn (GeV)                                      | 1.61         | 0.033         | 0.033                      |
| Half crossing angle (mrad)                              | 16.5         | 16.5          | 16.5                       |
| Piwinski angle                                          | 2.28         | 6.33          | 6.33                       |
| $N_e$ /bunch (10 <sup>10</sup> )                        | 9.68         | 2.3           | 2.3                        |
| Bunch number                                            | 420          | 3510          | 27000                      |
| Beam current (mA)                                       | 19.5         | 38.8          | 298.5                      |
| SR power /beam (MW)                                     | 31.4         | 1.3           | 9.9                        |
| Bending radius (km)                                     | 11.4         | 11.4          | 11.4                       |
| Momentum compaction (10 <sup>-5</sup> )                 | 1.15         | 1.15          | 1.15                       |
| $\beta_{IP} x/y (m)$                                    | 0.36/0.002   | 0.36/0.002    | 0.36/0.002                 |
| Emittance x/y (nm)                                      | 1.18/0.0036  | 0.17/0.0038   | 0.17/0.0038                |
| Transverse $\sigma_{IP}$ (um)                           | 20.6/0.085   | 7.81/0.087    | 7.81/0.087                 |
| $\xi_{\rm y}/\xi_{\rm y}/{ m IP}$                       | 0.025/0.085  | 0.017/0.053   | 0.017/0.053                |
| RF Phase (degree)                                       | 128          | 151           | 151                        |
| $V_{RF}(\text{GV})$                                     | 2.03         | 0.069         | 0.069                      |
| $f_{RF}$ (MHz) (harmonic)                               | 650          | 650 (217800)  | 650 (217800)               |
| Nature $\sigma_{z}$ (mm)                                | 2.75         | 2.92          | 2.92                       |
| Total $\sigma_{z}$ (mm)                                 | 2.85         | 3.0           | 3.0                        |
| HOM power/cavity (kw)                                   | 0.42 (2cell) | 0.096 (2cell) | 0.74 (2cell) half cavities |
| Energy spread (%)                                       | 0.096        | 0.036         | 0.036                      |
| Energy acceptance (%)                                   | 1.1          |               |                            |
| Energy acceptance by RF (%)                             | 1.98         | 1.2           | 1.2                        |
| $n_{\gamma}$                                            | 0.19         | 0.12          | 0.12                       |
| Life time due to                                        | 63           |               |                            |
| beamstrahlung_cal (minute)                              |              |               |                            |
| <i>F</i> (hour glass)                                   | 0.93         | 0.987         | 0.987                      |
| $L_{max}/\text{IP}(10^{34}\text{cm}^{-2}\text{s}^{-1})$ | 2.0          | 1.0           | 7.7                        |

## Beam Tail (Main Parameter 170825)



#### **CEPC Main Ring SRF Parameters**

| Zhai Jiyuan 20170706. 100 km, H shared cavities.<br>Main Ring parameter: Wang Dou 20170607 & 20170306 | н       | Z       | Z-HL    |
|-------------------------------------------------------------------------------------------------------|---------|---------|---------|
| Luminosity / IP [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ]                                  | 2       | 1       | 12      |
| SR power / beam [MW]                                                                                  | 32      | 1.9     | 16      |
| RF frequency [MHz]                                                                                    | 650     | 650     | 650     |
| RF voltage [GV]                                                                                       | 2.1     | 0.049   | 0.14    |
| Beam current / beam [mA]                                                                              | 19.2    | 54      | 466     |
| Bunch charge [nC]                                                                                     | 15.5    | 3.5     | 7.3     |
| Bunch length [mm]                                                                                     | 2.9     | 4.0     | 4.0     |
| Cell number / cavity                                                                                  | 2       | 2       | 2       |
| Cavity number in use                                                                                  | 336     | 24      | 96      |
| Gradient [MV/m]                                                                                       | 13.6    | 8.9     | 6.3     |
| Input power / cavity [kW]                                                                             | 190     | 158     | 335     |
| Cavity number / klystron                                                                              | 2       | 2       | 2       |
| Klystron power [kW]                                                                                   | 800     | 800     | 800     |
| Klystron number                                                                                       | 168     | 12      | 48      |
| HOM power / cavity [kW]                                                                               | 0.4     | 0.1     | 1.8     |
| Cavity number / cryomodule                                                                            | 6       | 6       | 6       |
| Cryomodule number                                                                                     | 56      | 4       | 16      |
| Q <sub>0</sub> at operating gradient                                                                  | 1E+10   | 1E+10   | 1E+10   |
| Total wall loss @ 4.5 K eq. [kW]                                                                      | 22      | 0.7     | 1.4     |
| Optimal Q <sub>L</sub>                                                                                | 9.6E+05 | 4.9E+05 | 1.2E+05 |

# **Parameter table vs lattice parameters**

|                                    | Hi       | ggs             | Ζ        |                 |  |
|------------------------------------|----------|-----------------|----------|-----------------|--|
|                                    | Estimate | Real<br>lattice | Estimate | Real<br>lattice |  |
| Emittance (nm)                     | 1.31     | 1.31            | 1.48     | 1.52            |  |
| α <sub>p</sub> (10 <sup>-5</sup> ) | 1.14     | 1.16            | 4.49     | 4.42            |  |
| U0 (MeV)                           | 1670     | 1708            | 34       | 35              |  |
| Energy spread (%)                  | 0.098    | 0.099           | 0.037    | 0.038           |  |
| σ <sub>z0</sub> (mm)               | 2.9      | 2.92            | 4.0      | 3.99            |  |

Difference between parameter design and real lattice: < 3%

#### **CEPC** Double Ring Baseline

- With new parameter list (20170306-100km\_2mm $\beta$ y)
- With new IR parameters L\*=2.2m,  $\theta$ c=33mrad, GQD0=150T/m
  - to lower the requirements of anti-solenoid and QD0 field
  - Bsol=6.6T, BQD0=3.3T which are realizable
- Compatible lattices for H, W and Z modes
  - $\beta^*$ , emittance
  - common cavities for H, W and Z modes, bunches filled in full ring for W&Z modes



## **CEPC W and Z bunch distributions**



#### Lattice design for interaction region Y.W. Wang

- Provide local chromaticity correction
- L\*=2.2m, θc=33mrad, GQD0=150T/m
- Reverse bending direction of last bends to avoid synchrotron radiation hitting IP
- IR of IP upstream: Ec < 100 keV within 400m, last bend Ec < 60 keV
- IR of IP downstream: Ec < 300 keV within 250m, last bend Ec < 120 keV



### Lattice design for ARC region

Y.W. Wang

- FODO cell, 90°/90°, non-interleaved sextupole scheme
  - period N=5cells
  - all 3rd and 4th resonance driving terms (RDT) due to sextupoles cancelled, except small 4Qx, 2Qx+2Qy, 4Qy, 2Qx-2Qy
  - tune shift dQ(Jx, Jy) is very small
    - DA on momentum: large
  - Chromaticity  $dQ(\delta)$  need to be corrected with many families
    - DA off momentum: with many families to correct dQ(δ) and –I break down



# **FODO cell for cryo-module**

- Y.W. Wang
- 336 / 6 / 2RF stations / 2 sections / 2= 7 cells in each section
- get a smallest average beta function to reduce the multi-bunch instability caused by RF cavities
  - 90/90 degree phase advance
  - as short as possible distance between quadrupoles, but should be larger than a module length (12m)



90/90 deg Half cell: 14m+2m βmax: 53.8 m βmin: 9.5 m

### Lattice design of RF region

• Common RF cavities for e- and e+ ring (Higgs)

- Y.W. Wang
- An electrostatic separator combined with a dipole magnet to avoid bending of incoming beam (ref: Oide, ICHEP16)
- RF region divided into two sections for bypassing half numbers of cavities in Z mode
- Deviation of outgoing beam is  $\Delta x=1.0$  m for bypassing the cryo-modules



## Lattice design for whole ring

• A lattice fulfilling requirements of the parameters list, geometry, photon background and key hardware



# Natural chromaticity vs. βx\*

Yiwei Wang

- Significant 3<sup>rd</sup> order horizontal chromaticity found in interaction region when  $\beta x^* < 0.3m$ 
  - Necessary to make dedicated high order chromaticity correction on horizontal plane



# **DA optimized with fluctuation**

Yuan Zhang, Yiwei Wang et al.

Bx\*=0.171m, By\*=0.002m Bx\*=0.37m, By\*=0.002m 20 20 10 10 0 ь 0 -10 -10 🛈 ph🛛se 🗐, 5🔍tur 🖣 phase= $\pi/2$ , 50tur phise 1, 5-turns -20 -20 phase=3172, 50turns phase=31/2, 50turns f(x)f(x)-0.015 0.015 0.01 -0.01 -0.005 0.01 -0.015 -0.01 -0.005 0.005 0 0.005 0 0.015 δp δp

wyw-170724-bx0.37

wyw-170713-bx0.171

ь

## DA, H/W/Z(bx=0.37, 170724)





Н





Ζ

(**OK**)

# **Optimize DA with Crab Waist**



Bx=0.36m, 170816

# **DA optimization**

Yuan Zhang

#### Variables: 59

- IR sextupoles, 4 families
- IR octupoles, 13 families
- IR higher order chromaticity knob(Cai), 2 families
- Phase advance between different sections, 8 variables
- Arc sextupoles, 32 families
- Tune: (177.55, 177.61)
- W/ damping, fluctuation, sawtooth orbit and tapering

## **Dynamic Aperture result**

- DA requirements:
  - Energy acceptance 1.2%
  - For on momentum particle  $15\sigma x \times 30\sigma y$



DA for x-y coupling=0.003

DA for on momentum particle

Yuan Zhang

- Z lattice should be compatible with the H lattice
  - Layout of the magnets should be kept except the RF region
    - Keep the geometry of H lattice by keeping all the bends
    - Fulfill the parameters of Z by re-matching the strength of other magnets
  - ARC region: Two FODO cells combined into one FODO cell in Z mode
  - RF region: half numbers of cavities in H mode bypassed in Z mode
  - Interaction region: matching section re-matched

# **ARC region**

- FODO cells in H & Z lattice
  - Two FODO cells combined into one cell to achieve an adequate emittance for Z mode



$$\epsilon_x = F \frac{C_q \gamma^2}{J_{xd}} \theta^3$$

# **ARC region**

- Dispersion suppressor in H & Z lattice
  - Quadrupoles in H dispersion suppressor combined with two FODO cells re-matched for Z dispersion




- RF region in H & Z lattice
  - half numbers of cavities in H mode bypassed in Z mode
    - fulfill the RF requirement and allow bunches filled in whole ring



#### Whole ring

#### • Whole ring of H & Z lattice



#### **CEPC Advanced Partial Double Ring**



#### **APDR lattice design**









#### **CEPC APDR Main Ring RF Parameters**

For APDR Z-pole baseline, only the large emittance case can work.

| 100 km, APDR, crossing angle 33 mrad,<br>2 IPs, 8 RF stations, 8*4km DR. | H (baseline) | Z(large<br>emittance) | Z(Small<br>emittance) |
|--------------------------------------------------------------------------|--------------|-----------------------|-----------------------|
| Beam Energy [GeV]                                                        | 120          | 45.5                  | 45.5                  |
| Luminosity / IP [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ]     | 2            | 1.03                  | 1.03                  |
| SR power / beam [MW]                                                     | 32           | 2.9                   | 1.8                   |
| RF freqeuncy [MHz]                                                       | 650          | 650                   | 650                   |
| RF voltage [GV]                                                          | 2.1          | 0.135                 | 0.049                 |
| Beam current / beam [mA]                                                 | 19.2         | 85.0                  | 53.9                  |
| Pulse current/ beam [mA]                                                 | 119.7        | 531.0                 | 336.6                 |
| Bunch charge [nC]                                                        | 15.5         | 4.80                  | 3.52                  |
| Bunch length [mm]                                                        | 2.9          | 4                     | 4                     |
| Bunches / beam                                                           | 412          | 5900                  | 5100                  |
| Bunches/ train                                                           | 103          | 1475                  | 1275                  |
| Bunch spacing in a train [ns]                                            | 129.4        | 9.0                   | 10.5                  |
| Train spacing Tg [us]                                                    | 28.3         | 28.3                  | 28.3                  |
| SR loss / turn [GV]                                                      | 1.67         | 0.034                 | 0.034                 |
| Syncrotron phase from crest [deg]                                        | 37.3         | 75.4                  | 46.1                  |
| Loss factor / cell [V/pC]                                                | 0.34         | 0.27                  | 0.27                  |
| Effective length per cavity [m]                                          | 0.46         | 0.46                  | 0.46                  |
| R/Q per cavity [Ω]                                                       | 213          | 213                   | 213                   |
| Cell number / cavity                                                     | 2            | 2                     | 2                     |
| Cavity number / RF station                                               | 42           | 3                     | 2                     |
| RF station number                                                        | 8            | 8                     | 8                     |
| Cavity number (total)                                                    | 336          | 24                    | 16                    |

| 100 km, APDR, crossing angle 33 mrad,<br>2 IPs, 8 RF stations, 8*4km DR. | H (baseline) | Z(large<br>emittance) | Z(Small<br>emittance) |
|--------------------------------------------------------------------------|--------------|-----------------------|-----------------------|
| Acc. Gradient [MV/m]                                                     | 13.59        | 12.23                 | 6.66                  |
| Cavity voltage [MV]                                                      | 6.25         | 5.63                  | 3.06                  |
| Input power / cavity [kW]                                                | 190          | 241                   | 229                   |
| Cavity per klystron                                                      | 2            | 2                     | 2                     |
| HOM power / cavity [kW]                                                  | 0.40         | 0.22                  | 0.10                  |
| $Q_0$ at operating gradient                                              | 1E+10        | 1E+10                 | 1E+10                 |
| Wall loss / cavity @ 2 K [W]                                             | 19           | 15                    | 5                     |
| Pb/ cavity [MW]                                                          | 0.75         | 2.99                  | 1.03                  |
| Opt. QL                                                                  | 1.0E+06      | 6.4E+05               | 2.0E+05               |
| Opt. detuning [kHz]                                                      | 0.25         | 1.96                  | 1.70                  |
| Cavity bandwidth [kHz]                                                   | 0.7          | 1.0                   | 3.3                   |
| Cavity stored energy [J]                                                 | 46           | 38                    | 11                    |
| Ng/N                                                                     | 2.1          | 2.1                   | 2.1                   |
| Ng                                                                       | 218          | 3133                  | 2708                  |
| Max relative voltage drop for 4+4 APDR                                   | 7.2%         | 36.0%                 | 41.9%                 |
| Max bunch train phase shift for 4+4 APDR [deg]                           | 6.3          | 8.6                   | #NUM!                 |

#### **CEPC Booster Layout**

T.J. Bian



### **Booster Parameters-1**

Tianjian Bian

#### • Parameter List

| Parameter                                              | Unit  | Value     | Parameter                                              | Unit  | Value     |
|--------------------------------------------------------|-------|-----------|--------------------------------------------------------|-------|-----------|
| Beam energy [E]                                        | GeV   | 10        | Beam energy [E]                                        | GeV   | 120       |
| Circumference [C]                                      | km    | 100       | Circumference [C]                                      | km    | 100       |
| Revolution frequency[f <sub>0</sub> ]                  | kHz   | 2.99      | Revolution frequency[f <sub>0</sub> ]                  | kHz   | 2.99      |
| Revolution time[f <sub>0</sub> ]                       | mus   | 333.56    | Revolution time[f <sub>0</sub> ]                       | mus   | 333.56    |
| Momentum compaction factor[α]                          |       | 2.10E-5   | Momentum compaction factor[α]                          |       | 2.15E-5   |
| Lorentz factor [g]                                     |       | 19569.51  | Lorentz factor [g]                                     |       | 234834.15 |
| emittance-horizontal[e <sub>x</sub> ]<br>inequilibrium | m∙rad | 2.16E-11  | emittance-horizontal[e <sub>x</sub> ]<br>inequilibrium | m∙rad | 3.1E-9    |
| injected from linac                                    | m∙rad | 3E-7      | injected from linac                                    | m∙rad | 3E-7      |
| emittance-vertical[e <sub>y</sub> ] inequilibrium      | m∙rad | 0.011E-11 | emittance-vertical[e <sub>y</sub> ] inequilibrium      | m∙rad | 0.0093E-9 |
| injected from linac                                    | m∙rad | 3E-7      | injected from linac                                    | m∙rad | 3E-7      |
| SR loss / turn [U0]                                    | MeV   | 0.064407  | SR loss / turn [U0]                                    | MeV   | 1337.17   |
| Transversedampingtime[t <sub>x</sub> ]                 | ms    | 103.58    | Transversedampingtime[t <sub>x</sub> ]                 | ms    | 0.596     |
| Harmonic number [h]                                    |       | 433633    | Harmonic number [h]                                    |       | 433633    |
|                                                        |       |           |                                                        |       |           |
|                                                        |       |           |                                                        |       |           |

#### **Booster Parameters-2**

|                                       | Н           | W           | Ζ           |
|---------------------------------------|-------------|-------------|-------------|
| Energy(GeV)                           | 120         | 80          | 45.50       |
| Number of IPs                         | 2           | 2           | 2           |
| SR loss/turn(GeV)                     | 1.61        | 0.32        | 0.033       |
| $N_e$ /bunch(10 <sup>10</sup> )       | 9.68        | 3.6         | 2.3         |
| Bunch number                          | 420         | 5700        | 27000       |
| Bunch $change(nC)$                    | 15.51       | 5.77        | 3.69        |
| Beam current(mA)                      | 19.5        | 98.6        | 298.5       |
| SR power/beam(MW)                     | 31.4        | 31.3        | 9.9         |
| Emittance $x/y(nm \cdot rad)$         | 1.18/0.0036 | 0.52/0.0017 | 0.17/0.0038 |
| Life time(h)                          | 1           | 2           | 4           |
| $Luminosity/IP(10^{34}cm^{-2}s^{-1})$ | 2.0         | 5.6         | 7.7         |

| Table 1 | Main | parameters | for | CEPC | $\operatorname{collider}$ |
|---------|------|------------|-----|------|---------------------------|
|---------|------|------------|-----|------|---------------------------|

#### Table 2Timing for CEPC booster

| CEPC booster              | Unit          | Z        | W        | Η        |
|---------------------------|---------------|----------|----------|----------|
| Injection times           |               | 18       | 4        | 1        |
| Revolution frequency      | Hz            | 2997.92  | 2997.92  | 2997.92  |
| Bunch number              |               | 1500     | 1425     | 420      |
| Transmission efficiency   | %             | 95       | 95       | 95       |
| Bunch charge              | nC            | 0.17     | 0.13     | 0.13     |
| Beam current              | mA            | 0.77     | 0.55     | 0.16     |
| Linac repetition rate     | Hz            | 100      | 100      | 100      |
| Kicker repetition rate    | Hz            | 100      | 100      | 100      |
| Kicker rise and fall time | ns            | $<\!220$ | $<\!230$ | $<\!500$ |
| From linac to booster     | sec           | 15       | 14.25    | 4.20     |
| From booster to collider  | $\mu s$       | 333.56   | 333.56   | 333.56   |
| Ramp cycling period       | sec           | 3        | 5        | 10       |
| Dipole field@injection    | $\mathbf{Gs}$ | 24.63    | 24.63    | 24.63    |
| Dipole field@ejection     | Gs            | 112.05   | 197.01   | 295.52   |
| Total injection time      | min           | 10.80    | 2.57     | 0.47     |
| Luminosity decay          | %             | 4.40     | 2.12     | 0.79     |

### **Booster Parameters-3**



Cycling period 10 sec

Table 3 Main parameters for CEPC booster@Injection energy

| Injection energy                       | Z                    | W                    | Н                    |
|----------------------------------------|----------------------|----------------------|----------------------|
| Energy(GeV)                            | 10                   | 10                   | 10                   |
| Bunch numbers                          | 1500                 | 1425                 | 420                  |
| SR loss/turn(GeV)                      | $6.54 \cdot 10^{-5}$ | $6.54 \cdot 10^{-5}$ | $6.54 \cdot 10^{-5}$ |
| $N_e$ /bunch(10 <sup>10</sup> )        | 0.11                 | 0.080                | 0.080                |
| Bunch change(nC)                       | 0.17                 | 0.13                 | 0.13                 |
| Bunch length(nm)                       | 15.32                | 15.32                | 15.32                |
| Energy spread(%)                       | $7.39 \cdot 10^{-3}$ | $7.39 \cdot 10^{-3}$ | $7.39 \cdot 10^{-3}$ |
| Beam current(mÅ)                       | 0.77                 | 0.55                 | 0.16                 |
| SR power/beam(MW)                      | $5.02 \cdot 10^{-5}$ | $3.59 \cdot 10^{-5}$ | $1.06 \cdot 10^{-5}$ |
| Momentum compaction factor $(10^{-5})$ | 2.56                 | 2.56                 | 2.56                 |
| Emittance in x(nm·rad)                 | 0.021                | 0.021                | 0.021                |
| RF voltage(GV)                         | 0.11                 | 0.11                 | 0.11                 |
| RF frequency(GHz)                      | 1.3                  | 1.3                  | 1.3                  |
| Harmonic numbers                       | 433633               | 433633               | 433633               |
| Longitudinal fractional tunnel         | 0.14                 | 0.14                 | 0.14                 |
| RF energy acceptance(%)                | 2.51                 | 2.51                 | 2.51                 |
| Damping time(s)                        | 104                  | 104                  | 104                  |

Table 4 Main parameters for CEPC booster@Ejection energy

| Ejection energy                        | Z      | W      | Н      |
|----------------------------------------|--------|--------|--------|
| Energy(GeV)                            | 45.50  | 80     | 120    |
| Bunch numbers                          | 1500   | 1425   | 420    |
| SR loss/turn(GeV)                      | 0.028  | 0.26   | 1.36   |
| $N_e$ /bunch(10 <sup>10</sup> )        | 0.11   | 0.080  | 0.080  |
| Bunch change(nC)                       | 0.17   | 0.13   | 0.13   |
| Bunch length(mm)                       | 0.96   | 1.62   | 2.40   |
| Energy spread(%)                       | 0.034  | 0.059  | 0.089  |
| Beam current(mA)                       | 0.77   | 0.55   | 0.16   |
| SR power/beam(MW)                      | 0.022  | 0.15   | 0.21   |
| Momentum compaction factor $(10^{-5})$ | 2.56   | 2.56   | 2.56   |
| Emittance in x(nm·rad)                 | 0.43   | 1.34   | 3.01   |
| RF voltage(GV)                         | 0.51   | 1.00   | 2.00   |
| RF frequency(GHz)                      | 1.3    | 1.3    | 1.3    |
| Harmonic number                        | 433633 | 433633 | 433633 |
| Longitudinal fractional tune           | 0.14   | 0.15   | 0.15   |
| RF energy acceptance(%)                | 2.43   | 2.10   | 1.29   |
| Damping time(ms)                       | 1099   | 202    | 60     |
|                                        |        |        |        |

Fig. 2 Timing for CEPC booster

### **100km CEPC Booster-1**

#### Lattice

- > 90 degree FODO
- > FODO length: 93.3 meter





# 100km CEPC Booster-2

T.J. Bian

- Geometry terms are minimized.
- Chromaticity can be cancelled order by order.
- First order beta-beat are cancelled.
- Emit : 1.89E-9 m\*rad@120GeV
- DA\_x=9.5sigma@0%, 8.3@0.5%, 4.6@1%
- DA\_y=9.7sigma@0%, 8.3@0.5%, 6.3@1%

#### **CEPC Booster SRF Parameters**

| Zhai Jiyuan 20170410. 10 GeV injection.<br>Booster parameter: Cui Xiaohao 20170401 | н     | Z-HL  |
|------------------------------------------------------------------------------------|-------|-------|
| Extraction beam energy [GeV]                                                       | 120   | 45.5  |
| Bunch charge [nC]                                                                  | 0.77  | 0.3   |
| Beam current [mA]                                                                  | 0.37  | 0.96  |
| Extraction RF voltage [GV]                                                         | 2.8   | 0.4   |
| Extraction bunch length [mm]                                                       | 4.7   | 1     |
| Cavity number in use (1.3 GHz TESLA 9-cell)                                        | 160   | 32    |
| Gradient [MV/m]                                                                    | 16.9  | 12.0  |
| QL                                                                                 | 2E+07 | 2E+07 |
| Cavity bandwidth [Hz]                                                              | 65    | 65    |
| Input power per cavity [kW] (remained detuning 10 Hz)                              | 5.8   | 2.5   |
| SSA power [kW] (one cavity per SSA)                                                | 10    | 10    |
| HOM power per cavity [W]                                                           | 0.4   | 1.6   |
| Cryomodule number in use (8 cavities per module)                                   | 20    | 4     |
| $Q_0 @ 2 K$ at operating gradient (long term)                                      | 2E+10 | 2E+10 |
| Total wall loss @ 4.5 K eq. [kW] (assume CW)                                       | 8.4   | 0.9   |

#### Layout of CEPC with pre-booster



#### A High Energy CEPC Injector Based on Plasma Wakefield Accelerator

Wei Lu



# **CEPC Linac Injector**

C. Meng

#### Main parameters of CEPC Linac

- Linac design goal
  - Simple and reliable
  - High availability
  - Linac is "inexistent" for collider Running
  - Always providing beams to meet the requirement

| Parameter                                       | Symb<br>ol       | Unit        | Value                     |
|-------------------------------------------------|------------------|-------------|---------------------------|
| e <sup>-</sup> /e+ beam energy                  | $E_{e}/E_{e+}$   | GeV         | 10                        |
| Repetition rate                                 | f <sub>rep</sub> | Hz          | 50→100                    |
| e <sup>-</sup> /e+ bunch                        | Ne-/Ne+          |             | >6.25×1<br>0 <sup>9</sup> |
| population                                      |                  | nC          | >1.0                      |
| Energy spread (e <sup>-</sup> /e <sup>+</sup> ) | $\sigma_{E}$     |             | <2×10 <sup>-3</sup>       |
| Emittance (e <sup>-</sup> /e <sup>+</sup> )     | $\mathcal{E}_r$  | mm∙<br>mrad | <0.3                      |
| e <sup>-</sup> beam energy on<br>Target         |                  | GeV         | 4                         |
| e <sup>-</sup> bunch charge on<br>Target        |                  | nC          | 10                        |

#### Layout of Linac Injector (I)





# **Linac Sources**

C. Meng

#### Electron source and bunching system

- Bunching System
  - SHB1: 142.8375 MHz
  - SHB2: 571.35 MHz
  - S-band Buncher (1): 2856.75 MHz



- S-band accelerator (1): 18 MV/m
- Solenoid focusing





## **10GeV Linac injecor design**

C. Meng

#### Beam dynamics results



#### **CEPC Detector (preCDR)**





# ILD-like detector with additional considerations (*incomplete list*):

- Shorter L\* (1.5/2.5m) → constraints on space for the Si/TPC tracker
- No power-pulsing → lower granularity of vertex detector and calorimeter
- □ Limited CM (up to 250 GeV)  $\rightarrow$  calorimeters of reduced size
- Lower radiation background → vertex detector closer to IP

#### Similar performance requirements to ILC detectors

- Momentum:  $\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1} \leftarrow \text{recoiled Higgs mass}$
- Impact parameter:  $\sigma_{r\phi} = 5 \oplus 10/(p \cdot \sin^{\frac{3}{2}}\theta) \mu m \leftarrow \text{flavor tagging, BR}$
- Jet energy:  $\frac{\sigma_E}{E} \approx 3-4\% \quad \leftarrow W/Z$  di-jet mass separation

Sub-detector groups consider design options, identify challenges, plan R&D

### **Preliminary Layout of CEPC IR**

S. Bai



#### **MDI related parameters**

| MDI parameters                    | old | new |
|-----------------------------------|-----|-----|
| <i>L</i> * (m)                    | 1.5 | 2.2 |
| Crossing angle (mrad)             | 30  | 33  |
| Strength of QD0 (T/m)             | 200 | 150 |
| Strength of detector solenoid (T) | 3.5 | 3.0 |
| Strength of anti-solenoid (T)     | 13  | 7.0 |

#### Magnetic field of superconducting QF and QD coils



### **Solenoid compensation**



 $\int B_z ds$  within 0~2.12m. Bz < 500Gauss away from 2.12m

#### **IR Beam pipes**



### SR from QD0 in horizontal plane



- In the Gaussian distribution beam, particles in 3σ occupies 99.7% of the total amount, 1σ occupies 68.7%, and 2σ occupies 95.5%.
  The total SR power generated by the OD0 magnet is
  - QD0 magnet is 646.3W in horizontal. The critical energy of photons is about 1308.3keV. (Slice

into 6 pieces)

# SR from B, FD in horizontal plane ~ last bending magnet upstream of IP and final doublet



# SR power and critical energy of FD in different slices $_{\sim \beta_x^*=0.36m}$

| Slices(3sigma) | QD0_SR_power_<br>X<br>(W) | QD0_SR_power_<br>Y<br>(W) | QD0_critical_ener<br>gy_X(KeV) | QD0_critical_ener<br>gy_Y(KeV) |
|----------------|---------------------------|---------------------------|--------------------------------|--------------------------------|
| 3              | 685.07                    | 178.49                    | 1189.35                        | 384.64                         |
| 6              | 646.34                    | 168.4                     | 1308.29                        | 423.10                         |
| 9              | 639.19                    | 166.54                    | 1347.94                        | 435.92                         |
| 12             | 636.69                    | 165.89                    | 1367.76                        | 442.33                         |
| 18             | 63/ 01                    | 165 10                    | 1387 58                        | 11Q 71                         |
| Slices(3sigma) | QF1_SR_power_<br>X<br>(W) | QF1_SR_power_<br>Y<br>(W) | QF1_critical_ene<br>rgy_X(KeV) | QF1_critical_ene<br>rgy_Y(KeV) |
| 3              | 1576.49                   | 34.16                     | 1405.21                        | 171.79                         |
| 6              | 1487.36                   | 32.23                     | 1545.74                        | 188.97                         |
| 9              | 1470.93                   | 31.87                     | 1592.58                        | 194.69                         |
| 12             |                           |                           | 1010.0                         | 407 50                         |
| 12             | 1465.18                   | 31.75                     | 1616.0                         | 197.56                         |

# The synchrotron radiation in the IR $\sim \beta_{v}^{*}=0.36m$

• Cold vacuum chamber has to be adopted within SC magnet for the sufficient coils space. The design has been accepted by cryogenic system.



 The synchrotron radiation power within QD0 is 3.9W along 1.73m, on QF1 is 5.7W along 1.48m. The region between QD0 and QF1 is 90 W (0.5m) where has special cooling structure.

### **Beam Induced Backgrounds at CEPC**



#### **CEPC Accelerator R&D Progress**

# **CEPC SRF R&D Plan (2017-2022)**

- Two small Test Cryomodules (650 MHz 2 x 2-cell, 1.3 GHz 2 x 9-cell)
- Two full scale Prototype Cryomodules (650 MHz 6 x 2-cell, 1.3 GHz 8 x 9-cell)
- Schedule
  - 2017-2018 (key components, IHEP Campus)
    - high Q 650 MHz and 1.3 GHz cavities, N-doping + EP
    - 650 MHz variable couplers (300 kW) , 1.3 GHz variable couplers (10 kW)
    - high power HOM coupler and damper, fast-cool-down and low magnetic module, reliable tuner
  - 2019-2020 (test modules integration, Huairou PAPS)
    - Horizontal test 16 MV/m,  $Q_0 > 2E10$
    - beam test 1~10 mA
  - 2021-2022 (prototype modules assembly and test, Huairou PAPS)

## **Key Components**



69

# **CEPC Main Ring 650 MHz Cryomodule**





| Overall length (flange to flange, m)         | 9.5 |
|----------------------------------------------|-----|
| Inner diameter of vacuum vessel (m)          | 1.3 |
| Beamline height from floor (m)               | 1.5 |
| Overall weight (t)                           | 16  |
| Cryo-system working pressure (mbar)          | 31  |
| Cryo-system working temperature (K)          | 2   |
| Cryo-system pressure stability at 2 K (mbar) | 0.1 |
| Diameter of 2-phase pipe, mm                 | 114 |
| 2 K heat exchange                            | 1   |
| Number of JT valve                           | 1   |
| Number of cavities                           | 6   |
| Number of coupler                            | 6   |
| HOM absorber                                 | 2   |
| Number of 200-POST                           | 6   |

#### 650 MHz Single Cell Cavity Test before N-doping





- Fine grain, 130um BCP + 3 h 750 C annealing + 30um BCP + 120 C bake 48 h
- After vertical test, this cavity has received N-doping in July and is ready for vertical test again.



CEPC N-doping studies are undergoing waiting for EP facility to be established in 2018

# N-doping

#### P. Sha

- Successful N-doping in Nb samples.
- Cavity N-doping planned after undoped cavity vertical test.
- EP facility neccesary for treatment after doping.





(Secondary ion mass spectrometry, sputtering rate = 0.14 nm/s)
# Shanghai Coherent Light Facility (SCLF)

- SCLF is a newly proposed MHz high rep-rate XFEL, based on an 8 GeV CW SRF linac;
- This facility will be built in a 3.2 km long tunnel (38m underground) at Zhang-Jiang High Tech Park, across the SSRF campus in Shanghai;
- This XFEL facility includes 3 undulator lines and ~10 experimental stations in phase one, it can provide the XFEL radiation in the photon energy range of 0.2 -25 keV.
- The project proposal was recently approved by the central government in April 2017, and now it is in the feasibility study phase, aiming at commencing the tunnel construction in 2018 and being completed in 2024.

# **CEPC klystron high efficiency design**



8 Cavities with BAC bunching method Perveance: 0.65 μp Voltage: 81.5kV Efficiency: 79.41%



9 Cavities with BAC bunching method (short length) Perveance: 0.25 μp Voltage: 110 kV Efficiency: 82%



9 Cavities with BAC bunching method (some reflected electrons) Perveance: 0.65 μp Voltage: 81.5kV Efficiency: 85.43%

Small Signal Analytic Design Large Signal Disk Simulation Output Data



8 Cavities with BAC bunching method (long length) Perveance: 0.25 μp Voltage: 110 kV Efficiency: 85%

# **IHEP New SRF Facility**

Platform of Advanced Photon Source Technology R&D, Huairou Science Park, Huairou, Beijing







Construction: 2017 - 2019 Ground Breaking: May 31, 2017



4500 m<sup>2</sup> SRF lab

# **PAPS project overview**

- "Platform of Advanced Photon Source Technology R&D", to provide infrastructure for construction of future project.
- Budget: 500M CNY funded by Beijing Gov.
- Construction: 2017.5-2020.6
- Consist of 7 systems:
  - RF system
  - Cryogenic system
  - Magnet technology
  - Beam test
  - > X-ray optics
  - X-ray detection
  - X-ray application





# SCRF Lab Layout (4500 m<sup>2</sup>)

建设世界先进的超导高频实验室,为我国和世界未来二十年超导加速器发展服务



#### 高能所现有超导高频设施 已不满足未来发展需要

#### 充分考虑了大型超导模组需求:

- 30米长大型洁净间
- 36米长恒温器组装区
- 20米长水平测试站(未来可 增加一个以满足批量)
- 同时测试4只9-cell腔的垂测
  杜瓦2个(具备高Q腔所需的
  低磁环境和消磁线圈)
- 2.5kW@4.5K低温制冷能力
  (可同时进行水平测试和垂 直测试)
- 专用的耦合器老练洁净间,
  同时老练8个耦合器
- 充足的腔和模组存放区域
- 合理的工作流程和动线设计

# **SppC Progresses**

## Framework for the SppC Conceptual Design Report

Baseline design

J.Y. Tang

- Tunnel circumference: 100 km
- Dipole magnet field: 12 T, using iron-based HTS technology
- Center of Mass energy: >70 TeV
- Injector chain: 2.1 TeV
- Relatively lower luminosity for the first phase, higher for the second phase
- Energy upgrading phase
  - Dipole magnet field: 20 -24T, iron-based HTS technology
  - Center of Mass energy: >125 TeV
  - Injector chain: 4.2 TeV (adding a high-energy booster ring in the main tunnel in the place of the electron ring and booster)
- Development of high-field superconducting magnet technology
  - Starting to develop required HTS magnet technology; before applicable iron-based HTS wire are available, models by YBCO and LTS wires can be used for specific studies (magnet structure, coil winding, stress, quench protection method etc.)

# **SPPC** main parameters (updated)

| Parameter                      | Unit                             | Value  |        |          |
|--------------------------------|----------------------------------|--------|--------|----------|
|                                |                                  | PreCDR | CDR    | Ultimate |
| Circumference                  | km                               | 54.4   | 100    | 100      |
| C.M. energy                    | TeV                              | 70.6   | 75     | 125-150  |
| Dipole field                   | Т                                | 20     | 12     | 20-24    |
| Injection energy               | TeV                              | 2.1    | 2.1    | 4.2      |
| Number of IPs                  |                                  | 2      | 2      | 2        |
| Nominal luminosity per IP      | cm <sup>-2</sup> s <sup>-1</sup> | 1.2e35 | 1.0e35 | -        |
| Beta function at collision     | m                                | 0.75   | 0.75   | -        |
| Circulating beam current       | А                                | 1.0    | 0.7    | -        |
| Bunch separation               | ns                               | 25     | 25     | -        |
| Bunch population               |                                  | 2.0e11 | 1.5e11 | -        |
| SR power per beam              | MW                               | 2.1    | 1.1    | -        |
| SR heat load per aperture @arc | W/m                              | 45     | 13     | -        |

### **Tunnel cross-section**

ø325

### SPPC Layout



# **SppC lattice design**

- Different lattice designs
  - Different schemes (100 TeV and 75 TeV @100 km)
  - Lattice at injection
  - Compatibility between CEPC and SPPC
  - Arc cells, Dispersion suppressors, insertions



# **Dynamic aperture study**

- At collision energy
- At injection energy (Sixtrack code)











# (for proton beam)



p-Linac: proton superconducting linac p-RCS: proton rapid cycling synchrotron MSS: Medium-Stage Synchrotron SS: Super Synchrotron

Ion beams have dedicated linac (I-Linac) and RCS (I-RCS)

# Major parameters for the injector chain

|                 | Value   | Unit |                   | Value  | Unit |
|-----------------|---------|------|-------------------|--------|------|
| p-Linac         |         |      | MSS               |        |      |
| Energy          | 1.2     | GeV  | Energy            | 180    | GeV  |
| Average current | 1.4     | mA   | Average current   | 20     | uA   |
| Length          | ~300    | m    | Circumference     | 3500   | m    |
| RF frequency    | 325/650 | MHz  | RF frequency      | 40     | MHz  |
| Repetition rate | 50      | Hz   | Repetition rate   | 0.5    | Hz   |
| Beam power      | 1.6     | MW   | Beam power        | 3.7    | MW   |
| p-RCS           |         |      | SS                |        |      |
| Energy          | 10      | GeV  | Energy            | 2.1    | TeV  |
| Average current | 0.34    | mA   | Accum. protons    | 1.0E14 |      |
| Circumference   | 970     | m    | Circumference     | 7200   | m    |
| RF frequency    | 36-40   | MHz  | RF frequency      | 200    | MHz  |
| Repetition rate | 25      | Hz   | Repetition period | 30     | S    |
| Beam power      | 3.4     | MW   | Protons per bunch | 1.5E11 |      |
|                 |         |      | Dipole field      | 8.3    | Т    |
|                 |         |      |                   | 85     |      |

## Technical challenges and R&D requirements -High field SC magnets

- Following the new SPPC design scope
  - Phase I: 12 T, all-HTS (iron-based conductors)
  - Phase II: 20-24 T, all-HTS
- New magnet design for 12-T dipoles
- R&D effort in 2016-2018
  - Cables, infrastructure
  - Development of a 12-T Nb3Sn-based twin-aperture magnets (alone, with NbTi, with HTS)

## Collaboration

- Domestic collaboration frame on HTS superconductors (material, industrial and applications) formed in October 2016
- CERN-IHEP collaboration on HiLumi LHC magnets

# **Design of 12-T Fe-based Dipole Magnet**



# **Domestic Collaboration on HTS**

In October 2016, A consortium for High-temperature superconducting materials, industrialization and applications was formed in China, with participation of major research and production institutions on HTS.

China is actually leading the development of Fe-HTS technology in the world; world-first 100-m Fe-HTS wire was made by CAS-Institute of Electrical Engineering in the last year .



## **Other important issues**

# **CEPC International Collaboration Status-1**

#### International collaboration experts in the CEPC study team:

- All accelerator subsystem working groups have established data base of potential international collaboration experts
- ✓ All accelerator subsystems have at least one international collaboration expert in the subsystem working groups

### International collaboration with major international labs:

- ✓ IHEP-BINP (Russia) MoU (Jan 2016)
- ✓ IHEP-KEK (Japan) MoU (Sept 2017)

#### International workshop and meetings on CEPC accelerator:

✓ The 6th IHEP-KEK SCRF Collaboration Meeting has been held on July 14-15 at IHEP

Meeting purposes:

- 1) Disussion on the IHEP Huairou SC Platform
- 2) ILC and CEPC SC technology issues and collaboration
- 3) ILC and CEPC SC industralization plans
- 4) ILC and CEPC SC collaboration

## **CEPC International Collaboration Status-2**



http://english.ihep.cas.cn/doc/2489.html

### KEK: CERN, IHEP, LAL, SLAC

Multi-Lab MoU on Circular Colliders with KEK Super B as a experimental facility

### **CEPC Site Selection Progresses**



4) Baoding (Xiong an), Hebei (Started in August 2017, near Beijing ~200km to the south)

### **China Enterprise Consortium Promoting CEPC**

#### **Enterprise Consortium**

helps & guides industry;

• .....

- win their support for CEPC;
- enhance CEPC quality, reduce cost;

| 6 <b>0</b>   | 免费人         | <del>6</del> 9 | 2 <b>44</b> 8                                                                                                   | F## | <b>企业类型</b> |
|--------------|-------------|----------------|-----------------------------------------------------------------------------------------------------------------|-----|-------------|
|              |             |                | <u> </u>                                                                                                        |     |             |
|              |             |                |                                                                                                                 |     |             |
|              | 883         | 8              | 0000072007/0000                                                                                                 |     |             |
|              |             | 4              | 第二日本目的目前を見るた                                                                                                    |     |             |
|              |             | •              | 2.1227月1月日日日日日日                                                                                                 |     |             |
|              |             |                | La Long Black MAR                                                                                               |     |             |
|              |             | ,              | I REPROPERSON.                                                                                                  |     |             |
|              | ***         |                | Editor: Beditor:                                                                                                |     |             |
|              |             |                | CREATENED STREET, ST.                                                                                           |     |             |
|              |             |                | Teatern and the state                                                                                           |     |             |
|              |             |                | ******                                                                                                          |     |             |
|              |             | 12             | ·····································                                                                           |     |             |
| 52.6 R       | 89 <b>8</b> | 13             | CONTRACTOR DATE: N                                                                                              |     |             |
|              |             |                |                                                                                                                 |     |             |
|              |             |                | ************                                                                                                    |     |             |
|              |             |                | INCOMPANY STATES                                                                                                |     |             |
| 425 <b>8</b> |             | <b>*</b> ×     | ARES AND A VERY DECK.                                                                                           |     |             |
|              | <b>29</b> 2 |                | A REPORT OF A R |     |             |
|              |             |                | ***********                                                                                                     |     |             |
|              |             |                | ARRHUCE (29) 8958                                                                                               |     |             |
|              | 585         |                | <u>我们的不能是我并有我们的</u>                                                                                             |     |             |
|              |             |                | 2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                                         |     |             |
|              |             | <b>8</b> .9    |                                                                                                                 |     |             |
| 82.5 A       |             | 82             | 2000000000000                                                                                                   |     |             |
|              |             | 83             | 「東京事工院生活協会会社                                                                                                    |     |             |
|              |             | 84             |                                                                                                                 |     |             |
|              |             |                | INCOMPANYABILE                                                                                                  |     |             |
|              |             |                | 1.周夏子出历史东北的工厂                                                                                                   |     |             |
| ****         | ∎‡          |                | I BERKANNESS I                                                                                                  |     |             |
|              |             | <b>8</b> .9    | ARRANGESCOVERSE.                                                                                                |     |             |
|              |             |                | ***********                                                                                                     |     |             |

| 电弹系统      |               | 8             | 並構立新永子(廣京)有限公司                              |      |
|-----------|---------------|---------------|---------------------------------------------|------|
|           | 1             | 29            | <u>注意講員科羅來予核末有關公司</u>                       |      |
|           | 際城            | 90            | 天水电气传出研究所有器者任公司                             |      |
|           | 1             | 51.           | 百安保科書請水气設計有限公司                              |      |
|           |               | 52            | 而安ま平永气有限公司                                  |      |
|           |               | 重复            | 计算机器 化化学 化化学 化化学 化化学 化化学 化化学 化化学 化化学 化化学 化化 |      |
|           | 1             | 重复            | 合肥繁荣电物细胞技术开发有限公司                            |      |
|           | 1             | 重复            | 合肥科学电物理设备制造有限公司                             |      |
| 1100 1540 | 用化器           | 55            | <u>北京北方车辆集团有限公司</u>                         |      |
|           | 王辉静           | 重复            | 黨所自殺会組成有限公司                                 |      |
|           |               | 54            | 上藏室治士程持术有限公司                                |      |
|           | 1             | 85            | 南京幕会書語有關書件公司                                |      |
|           | <u> </u>      | 96            | <u>社會工研練机器份有限公司</u>                         |      |
|           | 1             | 97            | 北京学育嘉斯科技定展有限委任公司                            |      |
|           | 1             | <b>56</b>     | 天產環境輻射性許工程有限公司                              |      |
| 444 (232) | 马史朝           | 55            | <u>社會有利維度用研究中心</u>                          |      |
|           |               | 40            | 科羅方舟智能控制技术(北京)有限公司                          |      |
|           | 1             | 61            | 大連百万木辐射防护工程有限公司                             |      |
| L         | <b>I</b>      | G             | <u>北京华藏博车科技有限公司</u>                         |      |
| 主 王       | 10.10.40      | 重复            | 上藏三井真空设备有限公司                                |      |
|           |               | C             | 格哪科仪(北京)科技有限公司                              |      |
| 控制        | 中用            | 64            | <u>他飞光纤光探游份有限公司</u>                         |      |
| 基理        | <b>I</b>      | 業実            | 比宜書動促新科技有陽量但公司                              |      |
|           | 1             | 重更            | <u>比京書動協斷科技有陽量但公司</u>                       |      |
|           | 1             | 6             | 中國东方副學科技會建立的                                |      |
|           | ■紀元。          | 65            | 中國航空主要航空和時代度                                |      |
| 电中美段      | 22 M          | 47            | 2.空温病料理有限公式                                 |      |
|           | 1             | 80            | CONSULT: BALL BILLE                         |      |
|           | 1             |               |                                             |      |
| <u> </u>  | +             | 83.<br>10 10  |                                             |      |
| 編体        | 朱应顺           | 8.A.          |                                             |      |
| <u> </u>  |               | 8.X.          |                                             |      |
|           |               | -             | 市場の影響時代は2000年後22日<br>東京一会の第2日の第2日           |      |
|           |               | -             | 100 000 000 000 000 000 000 000 000 000     |      |
|           |               | <u> </u>      | 2. 小田市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市   |      |
|           | 1             |               | ·····································       |      |
| 自由        | 重流            | -             | ●即二梁梯索工具有限公司                                |      |
|           | 1             | <del>[.</del> | 中国航空工业集团公司北京长城计量测试技术                        |      |
|           | 1             |               | <u>田牧府</u>                                  |      |
|           | 秋和野           | 97            | 中国科学院光电研究院                                  |      |
|           |               | 重更            | <u>具所首称合机束有限公司</u>                          |      |
| <b> </b>  |               | 96            | <u> 新祝都 (大澤) 料花有陽公司</u>                     |      |
|           |               | -             | (単純化化工作)(単純)有限性化の利用                         | <br> |
| 18 M 21   |               | 90<br>9 10    | 国家の教育の教育の                                   |      |
| <b> </b>  | +             |               |                                             |      |
|           | 1             | <u> </u>      | <u>医局面分泌除水子科育器份有限分别</u><br>以今天人時间が始まれる第     |      |
| 医测量2      | 21.1 <b>1</b> | <u> </u>      | <u>二日大台灣和時代有關之間</u><br>工作中本語為於新作為中國人員       |      |
|           |               |               | 大連口線展示動作大有協会員<br>春藤文章十七章工作は推由子星与推測調測を       |      |
|           |               | 54            | 产业业新建立                                      |      |
| -         |               | -             |                                             |      |

#### To be established on Nov. 7, 2017

### **International Workshop on CEPC**

#### CIRCULAR ELECTRON POSITRON COLLIDER

#### November 6-8, 2017 IHEP, Beijing

#### http://indico.ihep.ac.cn/event/6618

#### International Advisory Committee

Young-Kee Kim, U. Chicago (Chair) Barry Barish, Callech Hesheng Chen, IHEP Michael Davier, LAL Brian Foster, Oxford Rohini Godbole, CHEP, Indian Institute of Science David Gross, UC Santa Barbara George Hou, Taiwan U. Peter Jenni, CERN Eugene Levichev, BINP Lucie Linssen, CERN Joe Lykken, Fermilab Luciano Maiani, Sapienza University of Rome Michelangelo Mangano, CERN Hitoshi Murayama, UC Berkeley/IPMU Katsunobu Oida, KEK Robert Palmer, BNL John Seeman, SLAC lan Shipsey, Oxford Sleinar Stapnes, CERN Geoffrey Taylor, U. Metourne Henry Tye, 145, HKUST Vitang Wang, IHEP Harry Weens, ANL

#### Local Organizing Committee

Xinchou Lou, IHEP (Chair) Orighong Cao, PKU Joao Gumanaes Costa, IHEP Jae Gao, IHEP Yuanning Gao, THU Hongian He, THU Shan Jin, IHEP Jianbai Liu, USTC Yajun Mao, PKU Qing Qin, IHEP Mangi Nuan, IHEP Mangi Nuan, IHEP Mangi Yang, SDU Nu Xu, CCNU Haijun Yang, SJTU Haijun Yang, SJTU Hongbo Zhu, IHEP

han opretti Hallingene her dag in genation

#### • a major workshop on CEPC

- global collaboration
- examines R&D status
- CDR draft chapters
  - a major push
- CEPC organization update

#### Please come to this workshop

Nov 6~8, 2017, IHEP, China

#### http://indico.ihep.ac.cn/event/6618

### **Concluding remarks**

- CEPC-SppC shapes well towards CDR with clear physcis goals and with Fully Partial Double Ring Scheme of 100km as CEPC baseline and Advanced Partical Double Ring (APDR) Scheme as alternative
- 100km CEPC accelerator baseline design progress well
- Fund from MOST succeded in June 2016 (36M RMB)
- CEPC-SppC CDR to be finished both for accelerator and detector at the end of 2017
- Design and key technologies' R&D plan progress well
- In addition to international collabotaion in general, synergies of CEPC/SppC with LCC(ILC, CLIC) and FCC(e+e-,pp) are very important for the future of HEP community
- Young generations are the key forces to realize the goals

### Thanks go to

CEPC-SppC accelerator team and international collaborators