THE HIGGS BOSON RADIATIVE DECAYS*

Tao Han Univ. of Pittsburgh / Tsinghua U., Beijing NCTS 20th Anniversary Symposium Frontiers in Physics, August 3rd, 2017

* TH & Xing Wang, arXiv:1704.00790

The completion of the SM:

First time ever, we have a consistent relativistic, quantum mechanical theory: weakly coupled, unitary, renormalizable, vacuum-(quasi?)stable, valid up to an exponentially high scale, perhaps to the Planck scale M_{Pl}!

Further fundamental questions:

- Nature of EWSB: Higgs potential, EW phase trans.
- Vacuum stability: top quark mass/Yukawa coupling
- "Naturalness": TeV scale new physics
- Puzzles: DM, flavor physics, neutrino mass

NEW ERA: UNDER THE HIGGS LAMP POST Energy threshold for new particles + precision Higgs physics

Precision Higgs Physics

In a pessimistic scenario, the LHC does not see a new particle associated with the Higgs sector, then the effects of a heavy state on Higgs coupling g_i at the scale M:

 $\Delta_i \equiv \frac{g_i}{g_{SM}} - 1 \sim \mathcal{O}(v^2/M^2) \approx \text{a few \% for } \mathbf{M} \approx 1 \text{ TeV}$

Higgs coupling deviations: Δ :VVHbbH,TTHggH,YYHHHHComposite(3-9)% $(1 \text{ TeV/f})^2$ (100%)SUSY/H⁰, A⁰X6% (500 GeV/M_A)²(100%)T' $(1 \text{ TeV/f})^2$ -10% $(1 \text{ TeV/M_T})^2$ LHC 14 TeV, 3ab⁻¹:8%15%few%50%

HIGGS "RARE DECAYS" Anything not "well-done" is "Rare" (but NOT "exotic" !)

$$\bar{m}(\mu) = \bar{m}(\mu_0) \left(\frac{\bar{\alpha}_s(\mu)}{\bar{\alpha}_s(\mu_0)}\right)^{\frac{\gamma_0}{b_0}} = \bar{m}(\mu_0) \left(1 + \frac{b_0}{4\pi}\bar{\alpha}_s(\mu_0)\ln\frac{\mu^2}{\mu_0^2}\right)^{-\frac{\gamma_0}{b}}$$

With HL-LHC: (0.3 - 3) ab⁻¹ → 15 - 150M h's ! (now already about 1M!)

HIGGS RADIATIVE DECAYS $h \to f f \gamma$

Will focus on radiative decays (dashed curves).

SUMMARY ON WHAT WE DID

Revisit theoretical calculations: $- \frac{h}{\sqrt{f}} - \frac{h}{\sqrt{f}}$

- QED correction to Yukawa: $O(y_f^2 \alpha)$
- EW correction to top-Yukawa: $O(y_t^2 \alpha^3)$ EW correction: $O(\alpha^4)$ $f \in \mathcal{M}_{r}^{r}$

Re-evaluate the LHC search: $h \to \mu^+ \mu^- \gamma, e^+ e^- \gamma.$

Propose the LHC search for $h \to \tau^+ \tau^- \gamma$.

New LHC study for $h \to c \bar{c} \gamma$.

Exclusive $h \to f\bar{f}\gamma$

Results for $gg \to h \to \mu^+ \mu^- \gamma$, $h \to e^+ e^- \gamma$:

Channel	Signal	Background	Statistical Significance
	[fb]	[fb]	with 0.3 (3) ab^{-1} luminosity
$pp \to \gamma^* \gamma \to \mu^+ \mu^- \gamma$	0.69	23.5	2.47 (7.79)
$60 < E_{\gamma} < 63 \text{ GeV}$	0.69	14.6	3.13 (9.89)
$p_{T\gamma} > 55 \text{ GeV}$	0.46	11.8	2.32 (7.33)
$pp \to \gamma^* \gamma \to e^+ e^- \gamma$	1.06	27.0	3.53 (11.2)
$60 < E_{\gamma} < 63 \text{ GeV}$	1.06	17.0	4.45 (14.1)
$p_{T\gamma} > 55 \text{ GeV}$	0.79	17.6	3.26 (10.3)
$pp \to Z\gamma \to \mu^+\mu^-\gamma$	1.40	214	1.66(5.24)
$27 < E_{\gamma} < 33 {\rm GeV}$	1.10	121	1.73(5.48)
$p_{T\gamma} > 25 \text{ GeV}$	0.91	95.9	1.61 (5.09)
$pp \to Z\gamma \to e^+e^-\gamma$	1.38	224	1.60(5.05)
$27 < E_{\gamma} < 33 {\rm GeV}$	1.13	126	1.74(5.51)
$p_{T\gamma} > 25 \text{ GeV}$	0.91	100	1.58(4.98)

ATLAS/CMS expectation for direct decay: $h \rightarrow \mu^+ \mu^-$

 $2.3\sigma/7.0\sigma$ for 0.3 ab⁻¹/3 ab⁻¹

Table 3: The cross sections of signals and backgrounds, and the statistical significances of $pp \to V\gamma \to \ell^+ \ell^- \gamma$, $V = Z, \gamma^*$. 10

20 40 60 80 100 120 0 20 40 60 80 100 120

 $\overset{_{M_{b\bar{b}}[GeV]}}{\operatorname{A}\operatorname{remark}} \operatorname{on} \quad gg \to h^{M_{c\bar{c}}[GeV]} J/\psi \ \gamma \to \ell^+ \ell^- \gamma:$

 $J/\psi \gamma$ is more than an order of magnitude smaller; Further, the dominant contribution is from $\gamma^* \rightarrow J/\psi$, *not* from the direct hcc Yukawa. Must observe the continuum $\ell^+\ell^-\gamma$ first ...

Bodwin, Petriello et al. (2013, 2014, 2017); Konig, Neubert (2015)

 $gg \to h \to \tau^+ \tau^- \gamma$:

Current LHC observation is largely from VBF due to the m_{tt} reconstruction & DY backgrounds. Now there is an additional **y**, we could consider to use the leading production mechanism:

 $\sigma(WW, ZZ \to h \to \tau^+ \tau^-) = (4.2 \text{ pb}) \times (6.3\%) \approx 260 \text{ fb};$ $\sigma(gg \to h \to \tau^+ \tau^- \gamma) = (49 \text{ pb}) \times (0.1\%) \approx 50 \text{ fb}.$

Need dedicated analyses to draw a conclusion.

$gg \to h \to c \ \bar{c} \ \gamma :$ The currently related search $h \to bb$: $q\bar{q} \to Z/W + h \to \ell' s + b\bar{b}$ $VBF \to h \to b\bar{b} \ jj.$ Now there is an additional γ to trigger on, we could consider to use the leading production mechanism: $gg \to h \to c \ \bar{c} \ \gamma$

Crucially depends on charm-tagging!

Operating Point	ϵ_c	ϵ_b	ϵ_j
Ι	20%	10%	1%
II	30%	20%	3%
III	45%	50%	10%

Results for $gg \to h \to c \ \bar{c} \ \gamma$:

Luminosity	Operating	Signal	Signal	Signal	Background
	Point	(Total)	(QED)	$(\mathrm{EW}{+}\gamma)$	
	Ι	778	252	492	3.84×10^7
$3000 {\rm ~fb}^{-1}$	II	1750	567	1107	1.25×10^8
	III	3937	1275	2491	6.51×10^8

Very difficult to reach the SM expectations. Compare with the literature:

Method	$ \kappa_c $ upper limit projection at HL-LHC (3 ab ⁻¹)
$h \to c \bar{c} \gamma$ (this work)	6.3
$h \to c\bar{c} + \text{fit} \ [61]$	2.5
h + c production [62]	2.6
Higgs kinematics [63]	4.2
$h \rightarrow J/\psi \gamma ~[47]$	50

Table 6: Projected sensitivities for probing the $hc\bar{c}$ Yukawa coupling $\kappa_c = y_c^{\text{BSM}}/y_c^{\text{SM}}$ at the HL-LHC with various methods. ¹⁴

CONCLUSIONS

Theoretical calculations revisited:

- QED & running masses $O(Q_f^2 \ge 1\%) \rightarrow$ comparable to the Higgs factory need ~0.3% !
- EW corrections → interesting features/channels.

Re-evaluated the LHC search: $h \to \mu^+ \mu^- \gamma, e^+ e^- \gamma.$ comparable to $h \rightarrow \mu^+ \mu^-$! Propose the LHC search for $h \to \tau^+ \tau^- \gamma$. New LHC study: $h \rightarrow c \bar{c} \gamma$. complementary to other channels. **Radiative Higgs Decay is the next target!**

HAPPY 20TH ANNIVERSARY NCTS!

