2017/8/3@NCTS20th anniversary

Congratulations for 20th Anniversary !!

A possibility of QCD-induced EWSB in the early universe

Satoshi Iso (KEK, Sokendai)

Based on collaborations with

Kengo Shimada (LAPTh →Lausanne)

Pasquale Serpico (LAPTh, Annecy) Today's main message

Standard thermal history of the universe

If EWSB is described by a classically conformal model, the history of the early universe will be drastically different. Today's main message

Thermal history of the universe

→ different cosmological consequences

"classically conformal models"

 no dimensionful parameters in scalar potential quadratic term is assumed to be absent

$$V(\phi) = \lambda (|\phi|^2)^2$$

- motivated by LHC experiments naturalness & m_H = 125 GeV
- Symmetry breaking must occur radiatively via Coleman-Weinberg mechanism

$$V(\phi) = \frac{\lambda}{4}\phi^4 \left(\ln \frac{\phi^2}{M^2} - \frac{1}{2}\right)$$

Coleman-Weinberg mechanism does not work in SM. the large top Yukawa coupling invalidates the CW mechanism

Meissner Nicolai (07) Foot et al (07)

(B-L) extension of SM with flat Higgs potential at Planck

B-L sector

- U(1)_{B-L} gauge
- SM singlet scalar φ
 - Right-handed v

Okada, Orikasa, SI 0902.4050 0909.0128 1210.2848

"Occam's razor" scenario

that can explain

- B-L breaking triggers EWSB (126 GeV Higgs)
- Naturalness problem
- v oscillation, baryon asymmetry

Scalar potential of (h, ϕ) at zero temperature

No quadratic terms in classically conformal models

The early universe of classically conformal models

K.Shimada, P.Serpico, SI 1704.04955

Inflationary universe in classically conformal model

- 1 Large Field Inflation
- 2 Z' creation by Preheating \rightarrow generates large potential
- 3 Trap the field around $\phi = 0 \rightarrow$ thermalize

Linde (82), Kofman et.al.(96) Shimada, Kohri, SI (06)

Hypercooling of (B-L)+EW SB much below T_C

Bubble of true vacuum is created by tunneling.

Percolation of true vacuum

Guth Weinberg (82)

Bubbles of true vacuum are created by tunneling

T_p : percolation temperature

Universe is occupied with true vacuum bubbles

 T_{P} = percolation temperature

can be calculated by tunneling rate.

Note that de Sitter fluctuation $\sim T_{
m GH} = {\cal H}/2\pi$ is negligible at 100 MeV.

$$V_0^{1/4} \sim m_{Z'}$$

When temperature decreases down to 100 MeV at (ϕ =0, h=0)

$$\langle \bar{q}_i q_i \rangle \sim \Lambda_{\rm QCD}^3$$

Classification of the histories of the early universe

On top of it, slow roll inflation occurs if $g \lesssim 10^{-2} (m_{Z'}/\text{PeV})^3$ $|\eta| = m_{\text{pl}}^2 |V''|/V_0 < 1$

Classification of histories of the early universe

In this parameter region, slow roll inflation does not occur. $m_{Z'} \sim a \text{ few hundred GeV}$

Some cosmological consequences

Scenario (I) [QCD + (B-L) + EW] strong 1st order phase transition is expected

Release of the vacuum energy V₀ reheats the universe up to < 10 GeV. \rightarrow Chiral symmetry restored \rightarrow crossover QCD PT.

Also this parameter region is phenomenologically interesting since very light new particles are predicted

 $m_{RH\nu}, m_{\phi} \ll m_{Z'} \sim \text{several hundred GeV}$

probed by SHiP exp.

Background Gravitational Waves from 1st order PT in scenario (I)

(for stronger coupling, e.g. Jinno Takimoto (17))

An interesting possibility is generation of large scalar fluctuations & formation of PBHs with QCD-Hubble mass = $1M_{\odot}$

Jedmzek (97)

Summary

In classically conformal models motivated by LHC experiments, completely different history of the early universe may be realized!

hypercooling (if the gauge coupling is not large, e.g. g<0.2)

Classifications of early universe histories Scenario (I) → GW Scenario (II) → thermal inflation, PBH?

Other interesting possibilities: cold EWBG, dark matter

Thank you very much

and

Congratulations for 20th Anniversary !!

NCTS

Theory Center KEK

Collaborations, Partnership and Friendship

back up

Philosophy behind "classically conformal models"

What can we learn from LHC ? ... (my personal view)

"EW" physics may be directly related to Planck scale physics without intermediate scales in between.

Froggatt Nielsen (96) M.Shaposhnikov (07)

(2) No deviations from SM / no TeV SUSY? \rightarrow Naturalness

$$V = -\mu^2 |H|^2 + \lambda (|H|^2)^2$$

Quadratic divergence is related to "physical intermediate scale." To save naturalness, let's assume the following 2 conditions.

(a) No intermediate scale strongly coupled to SM

 e.g. No "M_{GUT}²" terms
 (b) Correct boundary condition at UV: No "M²_{pl} term"

 Just an assumption now for we do not know much about gravity

If μ=0 at UV scale, it will be never radiatively generated in the IR.
→ Classically conformal models
(scalar potential is radiatively generated.)

