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Introduction

" h
Vortex defect — codimension-2 defect in gauge theory

defined by a sinqular boundary condition
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Goal: study point-like voriex defects in
2D N=(2,2) SUSY gauge theories

The partition functions & some BPS observables

for the theories on ( squashed ) spheres were evaluated

using SUSY localization,

Benini-Cremonesi ‘12,
Doroud- Le Floch- Gomis- Lee ‘12, +



Methed :

® Define the 2D N=(2,2) SUSY theory
of vector & chiral multiplet on s*

% Focus on BPS observables preserving a SUSY Q
(& akilling spinor)

Q"= (rotation fixing North & South poles) +w

@ Introduce vortex defects Vi, Viys ot NP &SP

so that Q is preserved
Vi Vs
= compute correlators n



Results:
(® The vortex correlators turn out to be trivial
in many “simple” theories, but not always.
We see this in the examples with U() gauge group
— GLSM for CP™', Quintic CY

@ Even when their correlators are trivial,

vortex defects can be used to derive

— twisted chiral ring relation

— Picard - Fuchs differential equation



Multiplet @

Vector multiplet for gauge group (T

Am - gauge Field

O, f - real scalars

Do auxiliary scalar
7\:(7\ ) - gaugino, R-charge (+1)

Wz(w) gaugino, R-charge (-1)



SUSY localization (1)

The path inteqral over vector multiplet fields

oh the sphere with metric I = 12 (46" + w6 dg*)
localizes onto saddle poini configurations

=2 =_2
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P:—% , A= S-(c059=|=1)d9 ~on N/S hemispheres

% a.5€(Lie algebra ) , ¢ is GNO quantized,



Saddle points inthe presence of defects Vi, Vys

o= % D= -5, + 2nLnN.52(NP)+9:ui'15-8‘(SP)
’ L
s S-(cos#-1)d9 +1".d9 (North hemisphere)
9=_I’A={

S-(cosB+1)de +15.d9 (South hemisphere)

For V(1) theories, the path integral simplifies to
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Z j —2; exp (—ztl’a-l-?..SO)- {matter con'l:rlb}
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note

the shift. *FI-0 Couphng . L: -rD+ 9'FI2+ W



Multiplet @

chira| multiplets

c.cC.
¥ N
4) e ceeeerenanes Complex SCQ'GY', R-charge 29' 6
V= ( ) Dirac fermion , 29-1 ¢§(g':)
= oer ... complex auyx, field 29-2 F

Q

furnishes a complex rep.
of the gauge group,




Examples of U(1) gauge theories

@ N chirals (¢, &n) all with charge +1,

FT coupling r (>0)

=> vacua: {14+ lau*=r} /y(n)

- Non-linear sigma mode] (NLSM) on CP"™' of size F.



Examples of U(1) gauge theories
@ chirals (&, 5 ; P) withcharges (1,~1; -5)

FIcoupling F(>0)

Superpotential W=P.Fg(¢,,~, d5)

AVAAAAAAAAAA qumt\c POlg“O"‘i al

=> vacua = Quintic hypersurface F5(¢)=0

in CP* of size .

.. NLSM on a Calabi- Yau 3-fold.



SUSY localization (I)

Path integral over chirals |ocalizes to ¢=¢=F=0,

Gaussian approx. around there givesan exact result,

Take an U1) theory  and choose a saddle point (a,s),
Path integral over a single chiral of charge +1 gives

the " 1-loop determinant

_T(s+a-ia)

Z —
toob ™ D(st1-a+ia)
“"* R-charge




Exact partition function

(Benini- Cremonesi ’12, Doroud- Le Floch - Gomis - Lee "12)

example : CPN odel

ZS" - Z S_d_o;. e-i’((a-n-is)—iT;(a-is) ('l’i r+i9)

Seiz 2T

1+S+Ia-—ﬁj)

% Q3= -',:(R-clrwlrge)ér —i,‘(mass)é,



Correlators { Vs \ns)

o Sketch of the computation of ZAyjpep (2.5, 1¥,1%)

@ components in a chiral multiplet form 2 pairs,
®
$2q , T, F
® one canfind a 1** order differential op. J such that

J, .
¢ B REH 2 H 50, F

e [Q,7]1=[Q,IM])=0



Correlators ( Vi Vs )

detQ’-l’H‘ _ d?tQ"Ikﬂ]—T
detQ‘I’H dethIKﬂJ

® The evaluation of Z40pp =
needs eigenfunctions of Q= 3351-"' and ('3 or JJ7)

® General eigenfunctions take separated form,

£(5.9) ~ ™7 (Sino)t(m-x) near NP (8~0)

¥ b,®) ~ei"?. (sinv)t(m-\:l:) near SP (9~T)
fractional

X mex



® When 1" 15¢ 2, there are
2 possible boundary conditions at NP, SP_

© Ordinary b.c. b= = JT*},. J'F =0l qt poles,

% &, F may diverge mildly as ~ ( sind)” (¥>-1)

o Flipped bc. | J¢= J &, =0, ¢, =F=0 | at poles.

recall ']—(é H’
v J7 S
CP’ @. q’ul:




1-loop determinants
D (M-"+s-ia+a)
T (‘&:l*qs-l- |+S+ia-9) ceiling fn.

@ ordinary b.c. = Zyjp0p =

T (Ln-"+s-ia+a)

@ Hipped b.c. == £ =

Note that Zaeop is periodic in 1%1° in both cases,

( Large gauge transformation canshift %4> by integers )

The correlator therefore satisfies, for k.h€Z,

<Vv1"+k V,ls,,,k) = -kt"‘I(unVqs)



(Non-) triviality



CPN case :

do. s-it(aris-in®)-it (@-i5-in%)
2T

CVisVusy = = s S
(Z N"ns) -F[ T (M- +5+4;,-10)

y= T(MsT+N%+1+5-95+ia)
% chose ordinary b.c.
By & shift of integration contour of a

which does not cross the poles of the integrand

one can actually show the triviality,

(VwVigsy = e7EMI=210 ¢y



However, a different way of contour-shift
leads to the identification

Vortex defect Voo e— polynomial of Z =-2($+ic)

twisted chiral op.
nﬂe (_1, o] 5 B onO060 VV]“= 1 =1 (0)
e (0,13 Vo= 11 (24 95) = et (1)
}:

'l”e(i 32 ] ceeeeenes VQ“=.-F|; (21.%,)(21-&-3, 1-1) = e“lt (2)
3=



@) et= ﬁ|(2+ a3 )

N
(2) e2t= TI(Z+93)(2+35+1)
3=l

(1) is the twisted chival ring relation,
- For generic large (Z7 all the chirals are massive ,

Integrating them out yields the twisted superpotential,

W(Z)=-t-% — i_,‘ (Z+93) { log(T+94)-1}

NASANAAN

gives FI-0 tevm

W[4y =0 — ()



@) et= ﬁ|(2+ 1)

N
(2) e‘zt = ?IT(Z-I-Q})()'.',-P&} 'l-l)k
3=l VAN

() & (2) contradict due to .x (an effect of L)-deformation),

They both make sense if we replace

- a-b(. = -2:—}' (233-"')

- d
— % fg= ﬁ. (-253+%) T

) N d d
2)— Fle= 511 (-233+%3)(-253 % +1)- e



Remark :
N independent solutions to Z- Zs‘ = ﬁ' (-%;%-t-"lt,)- Zsz

agree precisely with “vortex partition functions .

The contour of a-integration in

Zga =2 S%‘;‘ ------ ) can be closed.

Then Zsz becomes a bilinear of vortex partition fn.



Quintic
Let us define Viy» by

OYdinﬂYy b.c. '['OV ¢|’...'5 (R-cha_rge 29 )
flipped b.c.for P (R-charge 2-10q)

Then the contour- shift analysis gives a non-trivial relation

between Viy and ®= L(P+ic)—q,



The relations

e (-1,-%5]  Vip= (1t5@)(245@)(3+50@) (4+56)
(=%, %] Vipr = (1+5@)(245@)(3450@)
(-*5,"%s) Vv = (1450)(2450@)

(%,-%]  Vye=(1t50)
%, 0)  Vp=1
(o0,%] Vp=-0x%



Remark :

Vit = € Ve and @=-F-a=32§-4 (2=-5%?)

lead to Picard-Fuchs equation

{(z $'- 235+ HEE B (E DR D] (7 2) =0
—xX

Zs’- for Calabi-\’au. &LSM is knownto coincide with e"l(,

(Jockers- Kumar- Lapan - Morrison- Romo “|2)

where K (t.E)= Kahler potential for the “conformal manifold v

]

bilinear of “periods” (solutions to =)



Conclusions
vortex defects in 2D N=(2,2) SQEDs were studied,

® CP* model -- Vi itself is trivial , but it can be used to

explain chiral ring relation & differential equation

h a new way,

@ Quintic model ... Vi is nontrivial ,

Other interesting issues

- behavior of Vi under mirror symmetry

» hon-abelian gauge theories



