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Part 1: existence of a precise correspondence

class S theories <= Painlevé equations‘

Class S theories: 4d N = 2 theories constructed from 6d N = (2,0)

Painlevé: special 2° order non-linear Ordinary Differential Equations
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class S theories <= Painlevé equations‘

Class S theories: 4d N = 2 theories constructed from 6d N = (2,0)

Painlevé: special 2° order non-linear Ordinary Differential Equations

Part 2: correspondence implies equivalence

solution Painlevé equations <= magnetic, dyonic Znek

and can be used to compute Zyck at strong coupling



Class § theories and Hitchin systems



Class S theories : class of four dimensional A" = 2 theories,

constructed from 6d N = (2,0) theory via twisted compactification on Cg4,,

6d N = (2,0) theory of type A1 on R* x Sk x Cyn
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Class S theories [Gaiotto]: class of four dimensional A/ = 2 theories,

constructed from 6d N = (2,0) theory via twisted compactification on Cg4,,

6d N = (2,0) theory of type A1 on R* x Sk x Cyn

Lew

‘ 4d N = 2 theory of class S

Class S theories are naturally associated to Hitchin system [GMN]:

4d N = 2 theory of class S

[ s

3d NV = 4 theory on R?; o-model with hyperkéhler target My

The target Mg coincides with the moduli space of a Hitchin system

associated to the punctured Riemann surface Cy ,



More in detail, Mg is the moduli space of solutions of the equations

F.z + R2[90z,952] =0
D:p. =0 mod G
Dz@% =0

with prescribed singular behaviour at the punctures of Cy,»



More in detail, Mg is the moduli space of solutions of the equations

F.z + R2[<Pz,952] =0
D:p. =0 mod G
Dz‘ﬁg :O

with prescribed singular behaviour at the punctures of Cy,»

e z: complex coordinate on Cy ,
e A.: gauge connection on Cy,,, (F.: field strength);
e ¢.: complex adjoint scalar ((1,0)-form after twist);

e two types of singular behaviour at the puncture z = z,:

Qo ~ , regular singularity (simple pole)
2 — Zk
1

0z~ m , irregular singularity (higher order pole, r > 1)



Different Cy,n, <= different Hitchin system, different 4d theories;

focus on rank 1 theories with genus 0 Riemann surface:
e SU(2) SQCD with flavor Nr =0,1,2,3,4
e Argyres-Douglas theories Hy, H1, Ha
Example: SU(2) Nr =4 SQCD from Cjy,4 with four regular punctures



Different Cy,n, <= different Hitchin system, different 4d theories;

focus on rank 1 theories with genus 0 Riemann surface:
e SU(2) SQCD with flavor Nr =0,1,2,3,4
e Argyres-Douglas theories Hy, H1, Ha

Example: SU(2) Nr =4 SQCD from Cjy,4 with four regular punctures

Theories related by coalescence diagram (collision of punctures):

2)2
SU(2)4 —_— SU 3 —_— SU( —_— SU 1 —_— SU

\(\




Structure of M y: hyperkahler space = many complex structures ¢ € CP!



Structure of M: hyperkéhler space = many complex structures ¢ € CP"

¢ = 0: reduction My — MHuiggs, moduli space pairs (Dz, ¢.) such that
DESOZ =0

e equivalent to torus fibration over Coulomb branch Byg;

e associated to complex algebraic integrable system [Donagi-Witten]:

Hamiltonian < u, spectral curve < Seiberg-Witten curve

1
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Structure of M: hyperkéhler space = many complex structures ¢ € CP"

¢ = 0: reduction My — MHuiggs, moduli space pairs (Dz, ¢.) such that
132992 =0

e equivalent to torus fibration over Coulomb branch Byg;

e associated to complex algebraic integrable system [Donagi-Witten]:

Hamiltonian < u, spectral curve < Seiberg-Witten curve

1
det(y — =) =0 = y° = Trgl

¢ € C*: reduction My —> My, flat connections V = ?ap + D+ R(p
e important limit: R — 0, ¢ — 0 with (/R = h fixed (oper limit)

V — hd: — ¢

oper

e opers of rank 1 theories are naturally associated to Painlevé equations



Painlevé equations



Painlevé (~ 1900): classify all non-linear 2° order, degree 1 ODE
G=F(q,4t)

such that
e [ rational in ¢, ¢, meromorphic in t;

e Painlevé property: the only movable singularities of g are poles
(i.e. the positions of branch points and essential singularities

do not depend on the initial data / integration constants)



Painlevé (~ 1900): classify all non-linear 2° order, degree 1 ODE
G=F(q,4¢t)

such that
e [ rational in ¢, ¢, meromorphic in t;

e Painlevé property: the only movable singularities of g are poles
(i.e. the positions of branch points and essential singularities

do not depend on the initial data / integration constants)

Final result: six non-trivial equations

| Pvi| PV | PIV | PiI | PHH| PI
#parameters‘ 4 ‘ 3 ‘ 2 ‘ 2 ‘ 1 ‘O

Examples: §¢=6¢>+t (PI), §=2¢>+tq+a (PI)



Later developments (Lax pair formulation, analysis space initial conditions)
led to a refinement of the classification; equations related by confluence:

PIII;
PVI ——— PV —— —— PIII; —— PIII3

PIV —
PHFN



Later developments (Lax pair formulation, analysis space initial conditions)
led to a refinement of the classification; equations related by confluence:

PIII;

PVl ——— PV —— —— PIIl; — PIII3
\P - \
—_—
PIV PHFN

Diagram analogue to the gauge theory one:

SU(2)2

SU(2)y —— SU(2 )1 —— SU(2

NN \

First hint towards the existence of a Painlevé/gauge theory correspondence




I) Painlevé arise as equations of motion classical Hamiltonian systems

dg _ OHa(q,p;t) dp __ 9Ha(g,p3t)
dt Op Todt dq

with time-dependent Hamiltonian H.(q, p;t) (a=1, ..., VI)



I) Painlevé arise as equations of motion classical Hamiltonian systems

dq _ 0Ma(g,p;t) dp _ _OHa(g,pit)
dt op Toodt dq
with time-dependent Hamiltonian H.(q, p;t) (a=1, ..., VI)

We can study time evolution of H,(t) = new 2° order, degree 2 ODE:

e og-Painlevé equations: ODEs satisfied by

0alt) o Hala(t), p(t);t) |

e 7-Painlevé equations: ODEs satisfied by 74(t)

d
oa(t) x ﬁlnTa(t)

The 74(t) function is the one which usually enters in physical problems



IT) Painlevé equations also arise from isomonodromic deformations of

systems of first order linear ODE with rational coefficients
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systems of first order linear ODE with rational coefficients

Consider a 2 X 2 system of linear ODE on a punctured Riemann sphere Co

where z € Cp,,, and the matrices A(z) € sl(2,C), ¥(z) € GL(2,C)
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IT) Painlevé equations also arise from isomonodromic deformations of

systems of first order linear ODE with rational coefficients

Consider a 2 X 2 system of linear ODE on a punctured Riemann sphere Co

where z € Cp,,, and the matrices A(z) € sl(2,C), ¥(z) € GL(2,C)

A(z) = z": AW (2) with  A®)(z) = Z A (2 =z,
— (Z _ ZV)T"+1 P i v
As for ¢, in the Hitchin system, a singularity z = 2, can be

e regular (r, = 0) = ¥ has branch point, monodromy matrices M,

e irregular (r, > 1) = U has essential singularity, Stokes matrices Sliw



How do Painlevé equations arise in this setting?
e Choice of A(z) = fixed M, / S,(C") matrices
e Choice of M, / S,(c") — many-parameters family of A(z;%)

Isomonodromic deformations of A(z; t—): deformations ¢ preserving MV/S,(CV)



How do Painlevé equations arise in this setting?
e Choice of A(z) = fixed M, / S,(c") matrices
e Choice of M, / S,(c") — many-parameters family of A(z;%)

Isomonodromic deformations of A(z; t—): deformations ¢ preserving MV/S,(CV)

Example: A(z;t) with 4 regular singularities at 0, 1,¢, 0o

Isomonodromic deformation: variations of ¢ which do not change M,



1-parameter case: deformation of A(z;t) by t is isomonodromic if

d
alll(z; t) = B(z;t)¥(z;t)

for some matrix B(z;t) € sl(2,C)



1-parameter case: deformation of A(z;t) by t is isomonodromic if

d
alll(z; t) = B(z;t)¥(z;t)

for some matrix B(z;t) € sl(2,C)
Matrix B(z;t) constrained: we have an overdetermined system

{ 0:%(z31) = Al ) ¥ (=5 1) A(z;t), B(z; t) Lax pair

0¥ (z;t) = B(z;t)¥(z;t)

= need compatibility condition ¥, = ¥, equivalent to

\ B A(z;t) = 0.B(z;t) + [B(z: 1), Az 1)] \




1-parameter case: deformation of A(z;t) by t is isomonodromic if

d
alll(z; t) = B(z;t)¥(z;t)

for some matrix B(z;t) € sl(2,C)
Matrix B(z;t) constrained: we have an overdetermined system

{ 0:%(z31) = Al ) ¥ (=5 1) A(z;t), B(z; t) Lax pair

0¥ (z;t) = B(z;t)¥(z;t)

= need compatibility condition ¥, = ¥, equivalent to

\ B A(z;t) = 0.B(z;t) + [B(z: 1), Az 1)] \

This condition gives a set of equations which reduce to a Painlevé equation;

choice of singularities in Cy,, <= choice of Painlevé equation



Introduce an overall scale x by rescaling parameters:

\ (kD= — A(z; ) U(2;1) = 0 \

Equivalence Painlevé k0. — A(z;t) <= Hitchin oper 19, — ¢



Introduce an overall scale x by rescaling parameters:

\ (kD= — A(z; ) U(2;1) = 0 \

Equivalence Painlevé k0. — A(z;t) <= Hitchin oper 70. — ¢.

Painlevé isomonodromic problem

N =2 theory Hitchin system

Riemann surface Co,p,

compactification surface Co

Painlevé connection 0, — A

oper ho; — @

Painlevé time ¢

gauge coupling A

Painlevé o-function (Hamiltonian)

Coulomb branch parameter «

Painlevé free parameters

masses N = 2 theory

curve 32 = %TI‘AQ

Seiberg-Witten curve y? = %Tnpz



Introduce an overall scale x by rescaling parameters:

\ (kD= — A(z; ) U(2;1) = 0 \

Equivalence Painlevé k0. — A(z;t) <= Hitchin oper 70. — ¢.

Painlevé isomonodromic problem

N =2 theory Hitchin system

Riemann surface Co,p,

compactification surface Co

Painlevé connection 0, — A

oper ho; — @

Painlevé time ¢

gauge coupling A

Painlevé o-function (Hamiltonian)

Coulomb branch parameter «

Painlevé free parameters

masses N = 2 theory

curve 32 = %TI‘AQ

Seiberg-Witten curve y? = %Trapz

Painlevé m-function

‘ (dual) Nekrasov partition function




Painlevé m-functions and CFT



Consider PVI (Cj,4); the solution to the associated system of linear ODE

dv
— = A(z; 1)U
W A
can be expressed in terms of a ¢ = 1 free fermion CFT [Jimbo-Miwa-Satol:

(¥ 5(20)¥a(2) 060101 Ous)
(000,0,0.,)

Uag(2052) = (2 — 20)

with free fermions ¢'a,¥5 (o, 8 =1,2) and “twist” fields O,



Consider PVI (Cj,4); the solution to the associated system of linear ODE

dv
— = A(z; 1)U
5L =AY
can be expressed in terms of a ¢ = 1 free fermion CFT [Jimbo-Miwa-Satol:

(¥ 5(20)¥a(2) 060101 Ous)
(000,0,0.,)

Vap(20;2) = (2 — 20)

with free fermions wa,ﬂﬁ (o, 8 =1,2) and “twist” fields O,

Idea: matrix A(z;t) determines monodromies M, of ¥

U — UM, when z—z, — e%i(

z2—2zy)

Having a correlator with such M, requires the Operator Product Expansion

— da )
OPE: 9y(20)(2) ~ 2=, a(2)0z, ~ O (e = 20)™

Do fields O, with such properties exist?



Yes: twist fields can be realized in terms of fermion bilinears
0., = exp (/ Tr[A(()”)J(y)]dy> , Jpa = EBQ/)Q Q(Q)l current
Cu

with conformal dimension A, = 62 = %Tr(A((]V>)2, +0, eigenvalues Aéy)



Yes: twist fields can be realized in terms of fermion bilinears
0., = exp (/ Tr[A(()”)J(y)]dy> v Jpa = Ugtha sl(2)1 current
Cu
with conformal dimension A, = 62 = %Tr(AéW)Q, +0, eigenvalues Aéy)

Bonus: from this construction the PVI 7-function can be realized as

\m(t) = (000,01 000) \

Need to consider the ¢ = 1 four-point conformal block

At A1

oot

Ay A



Remark: subtlety with dimension Ag,
e o (z): monodromy M;My around fields in the OPE OgO;
o Let 2790t he eigenvalues of M;My: oo defined up ton € Z
e Expect infinitely many primaries in OPE OgO; with Ay, = (oot +n)?

7v1(t) will involve linear combination of conformal blocks



Remark: subtlety with dimension Ag,
e o (z): monodromy M;My around fields in the OPE OgO;
o Let 2790t he eigenvalues of M;My: oo defined up ton € Z
e Expect infinitely many primaries in OPE OgO; with Ay, = (oot +n)?

7v1(t) will involve linear combination of conformal blocks

We can now use AGT (instanton) representation of the 4-point correlators

= express 7yi(t) in terms of SU(2) Ny = 4 instantons

Explicitly, obtain 7vi(t) as a t ~ 0 series expansion

TVI(t) _ Z 627rin770t Zlf\]\fep;(:zl(e“7 oot + 1 t)
nez




Tvi(t) = Z e?minmot ZNE=4(g o, + nst)
nez
Dictionary with N' =2 SU(2) Nr = 4 theory:
e ¢ =1= €1 = —e2 = € (overall scale, analogue of k/h € C*)

e conformal dimensions 2 +— masses mg/e2

first Painlevé integration constant oo +— Coulomb parameter a/e
e second Painlevé integration constant no: «— dual parameter ap/e

e time variable ¢ ~ 0 <— instanton parameter A/e (weak coupling)



Tvi(t) = Z e?minmot ZNE=4(g o, + nst)
nez
Dictionary with N' =2 SU(2) Nr = 4 theory:
e ¢ =1= €1 = —e2 = € (overall scale, analogue of k/h € C*)

e conformal dimensions 2 +— masses mg/e2

first Painlevé integration constant oo +— Coulomb parameter a/e
e second Painlevé integration constant no: «— dual parameter ap/e

e time variable ¢ ~ 0 <— instanton parameter A/e (weak coupling)

Following coalescence diagram, obtain small ¢ series for 7v, 71, , T111,, 71115

TV, Tl 5 THI,, TIII, (tNO)‘ = ‘SU(Q) Nrp =3,2,1,0 (ANO)‘




What about 71, 711, 7rv functions? No instanton expansions. . .



What about 71, 711, 7rv functions? No instanton expansions. . .

We can analyse 7-functions at ¢ — oo (in a fixed Stokes sector)
e Use 7-functions t — oo asymptotic behaviour + make ansatz
T(t) = Z T (0, 0 4 s t)”
nezL

e Plug ansatz into 7-Painlevé equation and determine t — oo expansion



What about 71, 711, 7rv functions? No instanton expansions. . .

We can analyse 7-functions at ¢ — co (in a fixed Stokes sector)
e Use 7-functions ¢ — oo asymptotic behaviour [Jimbo] + make ansatz
T(t) = Z T 7,0+ n;t)”
nezZ
e Plug ansatz into 7-Painlevé equation and determine t — oo expansion

—> extract “Znex” at strong coupling (A — 00) and €1 + €2 = 0:

‘ TIv, Ti1, 71 (¢ — 00) ‘ < ‘ Argyres-Douglas Ha, H1, Ho (A — 00) ‘

Correspondence Stokes sectors <= strong coupling points



What about 71, 711, 7rv functions? No instanton expansions. . .

We can analyse 7-functions at ¢ — co (in a fixed Stokes sector)
e Use 7-functions ¢ — oo asymptotic behaviour [Jimbo] + make ansatz
T(t) = Z T 7,0+ n;t)”
nezZ
e Plug ansatz into 7-Painlevé equation and determine t — oo expansion

—> extract “Znex” at strong coupling (A — 00) and €1 + €2 = 0:

‘ TIv, Ti1, 71 (¢ — 00) ‘ < ‘ Argyres-Douglas Ha, H1, Ho (A — 00) ‘

Correspondence Stokes sectors <= strong coupling points

Proceed in the same way for v, 1, , 7111, , 71115

TV, TI1y , TI1,, TIII3 (t—>OO)‘ — ‘SU(?) NF:3,2,1,0(A—>OO)‘




Example: 7-function for PII / Argyres-Douglas H;
Expansion 1: argt =7, +%

Trr(t) = Z ™G (o n,s), 43 =952
nezZ

3s2 1 2
g(o-7 5) = 37%+0557ﬁ7%+

02 o2
FT127FTG(1+0)

S Dy (o)
1
v 2]
k=1
3402 — 9662 + 31
Di(o) = 234 - ) Do) =...

Expansion 2: argt = 0, :i:%’T

mr(t) = Y ETIG(o 4 nys), 8P = 952
nez

G(o,s) = 77+

2 2 0 9
s~ 267 G(1 4o+ 3G +o-2)

oo
Dy, (o)
1y 2]
k=1
io (6802 — 962 + 2
Dl(g):_%7 Dy(o) = ...



Perspectives



Differential Painlevé equations are part of a more general story [Sakai]

The list of D

Ay
}

ay
A?

~
A AP AQ

Al Al AP AP AP AP

A AP - a0 LDP- DR

NN o
B (0= B B (1)

DO (I DM (111 DM (111

0) AE,I} is a boss of Painlevé equations (elliptic Painlevé )
1) The A-series give ¢-difference Painlevé equations
2) AE,I)”, A‘ll)*, Agl}’: difference Painlevé (Boalch) corresponding to

[(111111,222,33)], [(1111),(1111), (22)],

[(111), (111), (111))].

3) Eight in the box are Painlevé differential equations.

0),1) rank 1 6d ' = (1,0) and 5d N’ = 1 SU(2) Np =0,...,7
2) rank 1 4d Minahan-Nemeschansky (from a talk by [Ohyama))



Conclusions



Hitchin systems 4d N' = 2 <= Painlevé isomonodromic problems:
e oper connection hd, — ¢, <= Painlevé connection k0, — A
e “dual” instanton partition function <= Painlevé 7-function

Time evolution 7(¢) determined by isomonodromic deformation condition;

c=1y»

used to extract strongly-coupled “Zg.” of Argyres-Douglas and SQCD



Hitchin systems 4d N' = 2 <= Painlevé isomonodromic problems:
e oper connection hd, — ¢, <= Painlevé connection k0, — A
e “dual” instanton partition function <= Painlevé 7-function

Time evolution 7(¢) determined by isomonodromic deformation condition;

c=1y»

used to extract strongly-coupled “Zg.” of Argyres-Douglas and SQCD

Future directions:
e Argyres-Douglas at superconformal point?
o flat sections: “dual” ramified partition function?
e ¢ # 1: quantization of Painlevé Hamiltonian?

o g-difference Painlevé: relation to non-perturbative topological strings?



Thanks!



