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General settings and context — Motivation

Construction, integrability and exact results of deformed CFTs.

Deformations of Integrable models in gauge theories and AdS/CFT

» N =4 SU(N) SYM for N >> 1 exhibits integrability
[Minahan-Zarembo 02]. Maximally supersymmetric and
conformal. The AdSs x S° dual backgrounds is also integrable
[Bena-Polchinski-Roiban 03].

» Certain (marginal) deformations retain integrability and reduce
susy, e.g. (y-deformations) reduce to N = 1 [Leigh-Strassler 95].
The gravity dual [Lunin-Maldacena 05] is integrable [Frolov 05].

» There are N/ = 1 theories which have non-integrable
supergravity duals,
e.g. in AdSs x Ty 1 motion of strings is even chaotic
[Basu-Zayas 11]

Hence, susy does not imply integrability.



| will show that is it possible to have deformations which:

» Break supersymmetry completely.

> Preserve integrability.
Recall even QCD exhibits some integrability in certain
limits/high energy [Libatov 93].



Exact B-functions, anomalous dimensions, correlators

»

The quantum behaviour of a field theory is encoded in the
B-function egs. and the anomalous dimensions of the
operators.

Traditionally these are determined perturbatively.

Is it possible to compute the S-function and the anomalous
dimensions exactly, i.e. all orders?

One could discover new fixed point theories towards the IR.

Exact correlation functions?

Typically, these are very difficult tasks. In some cases if there
is enough supersymmetry the 1-loop could be enough and the
higher ones vanish, i.e. N' =2 SYM in 4-dims.

When these computations can be performed to all loops are
rare and this is then very exciting.

| will show that these are possible.



The bosonized non-Abelian Thirring model

Uncover classical & quantum aspects of the action

kA
Sk (g) = Swzwk(g) +—— /JiJi ,

where Swzw k(g) is the WZW action [Witten 83]
ik

k [ _ _
Swzw k(&) = *E/Tr(g 19,6570 g) + =

/BTr(g_ldg)3 , g€G.

> Related via bosonization to an action in 14+1 dims with
fermions 1 and ¢? in the quark rep of SU(N),
a=1,2,... N2 — 1 [Dashen-Frishman 73 & 75].



» When A = 0 this action is Invariant under

g0 (0y) g Qy(o-).

There are two copies of a current algebra at level k € ZT It is
realized by

J2 = —iTr(t%1gg™ ), 2 =—iTr(t%g 'o_g) .

The theory is a CFT.

» The extra term J?J2 breaks the symmetry to a global
diagonal one
g — AlgA AeG.

> Relevant perturbation [Kadanoff-Brown 79, Chaudhuri-Schwartz 89].
The parameter A should run under the RG flow.



Derivation of the models (ks 13]

The starting point is the action

5(8.8) = Swaw. () + Secm(@) |-

> Swzw.k(g) is the WZW action for g € G

k _ _ ik -
Swaw(g) = — - [ Te(g "0gg M0 g) + o [ Tr(e ' dg)?

This is a CFT; has a Gp cur X Gr,cyur current algebra symmetry.
» Spcm(g) is the PCM action for (g € G) with coupling x?

_ K2 1 aa1a -
Secm (&) = —;/Tf(g 19, g8710-z) .

It is integrable with global Gy x Gr symmetry.



Derivation by gauging
We will gauge the group acting as

g—+Agh, g Az, AEG.
Hence we consider the action
Skx2(8:8) = Sgwzw k(& A+) + Sgpcm(8, A+ )
where
Sewzw. k(& A+) = Swzw k(&)

k
+E /Tr (Afanggil — A+g7187g—|— AngJngl — AfAJr) )

and )
Sepcu(8.Ax) = [ Tr(g ' Drgg 1D g) ,

with the covariant derivatives being D1g = 015 — AL g.



We choose the gauge fixing

g=1.
Hence the gauged fixed action becomes

2
Sk (g 1) = Sgwzw k(g Ax) — — /Tr(A+A_) .

Integrating out the gauge fields we obtain the action

k _ _
Sa(8) = Swzwi(e) + = [ 2(AT1=DT) 1P

where
Dap = Tr(tagtrg ')
and .
A= — .
k 4«2

is the deformation parameter.

Generalization to a general matrix Ad,, — A, straightforward.



Basic properties

» For small A it becomes the non-Abelian anisotropic
(bosonised) Thirring model action

kA
Ska(8) = Swzw k(g) + ?/Jiji N

They share the same symmetries.

» The theory is driven away from the conformal point.

» Marginally relevant perturbation [Kadanoff-Brown 79,
Chaudhuri-Schwartz 89]. The RG flow equation

a _
dt
to all-loops in A, but to leading order in 1/k.
» The model is integrable [KS 13].

> It has a Yangian symmetry [ltsios-KS-Siampos-Torrielli, 14].



A remarkable symmetry
The effective action has the symmetry [Itsios-KS-Siampos 14]

S a-1(g™h) =Skale)

> A duality-type symmetry.
> It should be reflected as a symmetry in physical quantities and
correlators.

» The renormalized currents J7 are invariant under this
transformation.



Example with SU(2)

Consider the case with
)\ab = A‘Sab )

let G = SU(2). and parametrize

it)éﬁ,'(f,'
’

g=e fi = (—sin Bsin-y,sin B cosy, cos ) ,

The corresponding o-model has metric

1+A 1— )2
2 _ L2 2/c2
ds —k<1_)\d +A(“) sin ocds(S)),

and antisymmetric tensor

a2
B =k (—«x—l— (1A(of;> cos & sin zx) Vol(5?)

where
Ala) = (1—=A)%cos?a + (1+A)%sin®a .



Integrability and algebraic structure

Equations of motion
> Varying with respect to g we obtain that
D (Digg')=F., Di(g'Dg)=F

which due to [Dy, D_]g = [g, F+_], are equivalent
» Varying with respect to Ay's

Digg '=(M'"-1A,, g'Dg=—-(AT1-1A_,
» The above can be cast as

MLA —0 AL =]ALA ],
3. A —NI_A, =[ALA].

from which

1



Integrability
» Assume the classical equations can be written as a Lax eq.
dL=LAL or 8+L_—8_L+: [L+,L_],

where Ly = Ly (7,0, 1) and pu € C is the spectral parameter.
» Then, the classical monodromy matrix

+o00
M:%m/ doly, pM=0.
—c0

gives rise to infinitely many conserved changes.

» In our case )
H
Ly=-—""—C A,
ST RTE=S

» Some integrable cases A,p # Adap [Thompson-Siampos-KS,15].

Extendable to semi-symmetric spaces (Z4 grading),
i.e. PSU(2,2|4)/50(1,4) x SO(5), very important in AdS/CFT
[Hollowood-Miramontes-Schmidtt 14].



Algebraic properties
The Poisson brackets for [+ ~ AL

{12,12} = € fape (1S — (1+2x)15) b12 & 2625,507 |
(12,1°} = —€® fope (IS + 1) 612,

where
2\ 142

KA (1+An)  2A

>1.

> Algebra constructed in [Rajeev 89, Balog-Forgacs-Horvath-Palla 94]

> A deformation of the PCM algebra (for x = 1).

» There is a Yangian symmetry and provide non-trivial solutions
to the Yang-Baxter equation via the Maillet brackets
[Itsios-KS-Siampos-Torrielli, 14]. (Maillet brackets: Poisson
brackets of the monodromy matrix; Jacobi identities implies
the Yang—Baxter eq)



B-function and anomalous dimensions

Perturbative computations
The currents obey the OPEs

dab fabe J<(w)
(z—=w)?2  Vkz—w

J2(2)Jb(w) =

» Using these we may compute the 2-point functions

(J2(x1) P (x0))a = (J2(x1)JE (xp) e~ 7 J 22 (2) 7 (2)
(J2(x0) TP (x0))a = (J2(x1) TP (xp)e~ 7 | 22 (2)F(2))

perturbatively in A by expanding the exponential.
» The basic correlators are

. _ §ab R c o 1 fabc
P P00)) =5 (P 0a) 0 ) = 7t

and similarly for the J?'s. Mixed JJ correlators vanish.

» For higher correlators use Ward dentities



Perturbative results; Renormalization
Relations between the bare and renormalized quantities

R=2V%p, R=ZV2FP, A=2ZA,
» The renormalized n-point functions are cutoff independent
(S ()P ()0 = Z7H (I () I8 (%)) z4a
» Up to three-loops this requires that
Z7l =142¢6A% - % ()\2 —2A% 4 (9(/\4)) In(e2p?)

Zi=1+ % (;A—;R + O(A3)> In(e2p?) |

» Depends on the energy scale 2 and a small distance cut-off.
> c¢ is the quadratic Casimir in the adjoint rep.,
i.e. facdfbcd = —CGOab-



The perturbative B-function and anomalous dimensions
» The B-function is by definition

_ 1 dA (o 5,3 4
P=atan = o (V-2 o)

where the bare coupling Ay is kept fixed.

» The anomalous dimension of the currents is
dInZ1/2

(J) _ ,, 9L €6 12 5,3 4
% U i k(/\ 20° + O(A%)) .

Is it possible to compute these exactly in A?



Analyticity: A-dependence of physical quantities

ix?t?

» Expand the action for g = e around the identity

k 1+A

4T1—A /a+ax+

kA =

» The B-function & anomalous dims may have poles at A = £1.
> The effective action has two well defined limits:

» The non-Abelian T-duality limit

2
/\:17%, k=5 o0 |

» The pseudochiral model limit

1

The B-function & anomalous dims should have good limits.



» The B-function & anomalous dims should be invariant under

for k > 1.

» Some perturbative information and the above symmetry are
enough to determine the B-function and the anomalous
dimensions exactly in A and to leading order in k.



The exact B-function and anomalous dimensions
The exact B-function and anomalous dimensions are of the form

_ cG f()t) ) _ cG g(/\)

T ey (Ve

where f(A) and g(A) are analytic in A.
» They have a well defined non-Abelian and pseudodual limits.
» Due to the symmetry (k,A) +— (—k,A~1) we have that
MFA/A)=Ff(A),  Atg(1/A) =g(A) .

f(A) and f(A) are polynomials of, at most, degree four.
They are fixed by the above symemtry and by the up to
two-loops perturbative reult.



» The final result is

CG )\2
Br =
2k (1+ )2

and

2
H___ A
7 PRSI E e

Agree with perturbation theory to order checked, i.e. O(A)3.



3-point functions of currents

With similar computations and arguments we compute:

2 b ¢ = 1+A+A2 fabc
(S2(xa) P (x2) I (x3)) = N T
and
(L2 (x1) P (x0) JE(x3)) = A fabcX12

VKT =2)(1+21)3 xfr5a3%es

> These are leading order for k > 1 and respect the symmetry
k— —k A — !
: 1

» The other correlators follow from parity.
Similarly one computes correlators involving primary fields.



A digression; Left-right assymetric deformations

Note: there is no new fixed point towards the IR.
This changes when two different levels k; and kg.

» Beta-function

dt — 2/kikg (1—A2)2

A new fixed point in the IRat A = Ay = 1/:—;.

» Anomalous dimensions

dA cc A2(A—Ag)(A—Agh)

_ MM g AP(A—Ao)?
T ke 1= 0 TRT T (1 A2)3

» Evidence of the RG flow to a diffenent CFT in the IR

IR GkL X GkR—kL

GkL X GkR X GkR*kL .

kr

For G = SU(2) argued to describe a fermi liquid as the IR
fixed point of interacting chiral fermions [Andrei-Douglas-Jerez 99]



Gravitational approach
Using the effective action

k _ _
Ska(g) = Swzw.k(g) + ;/Ji()\ - D7) b

and the one-loop B-functions in 1/k [Ecker-Honerkamp 71, Friedan 80,
Braaten-Curtright-Zachos 85, Fridling-van de Ven 86]

I | BBy _ o
dt da M

same result for the beta-function [Itsios-KS-Siampos 14].

cG )t2
Pr=—o s
2k (1+A)

By extracting the wave function renormalization it is possible to
compute the exact anomalous dim from the eff.action
[Georgiou-KS-Siampos 15].



Spacetimes - type-1I Supergravity

We aim at using these o-models as building blocks for constructing
solutions of type-Il Supergravity.

Need to:
» Decide which part of a 10-dim space to deform.
» Use for the NS-sector the o-models field and for the dilaton

o= —%det()rl -DT).

» Support these NS-sector with RR-fluxes.

» Find rules, if possible, for determining these RR fields, or
compute them by brute force.



Several examples of A-deformations [KS-Thompson 14,
Demulder-KS-Thompson 15]. The RR-field rules are essentially the
same as those for non-Abelian T-duality [KS-Thompson 10].

» AdS; x S3 x T* using the SU(2) x SL(2,R) isometry.

AdS; x §? x T® using the SU(2) x SL(2,R) isometry.

v

v

AdSs x S3 x T* using the
SU(2) x SU(2) x SL(2,R) x SL(2,R) isometry.

\{

AdSs x S° using the SO(6) x SL(2,4) isometry.

v

Supercoset embedding for AdS, X S? [Borsato-Tseytlin-Wulff,16].



Explicit example: A new twist to the old black hole

The NS sector:
The metric is [KS 13]

ds? = k (u(— coth? pdt? + dp?) + ——— (cosh tdp + sinh t coth pdt)Q)

1+A 1-A2
Tk (2 (deo? o+ cot? wd?) + o (cos pdw + sin g cotwd)?
1+4 1-22
9
+ de,-2 .
i=4

Ist line: A deformation of the SL(2,R)/U(1) exact CFT.
2nd line: A deformation of the SU(2)/U(1) exact CFT.

In addition:

» The dilaton is

e ?® —sin? wsinh?p .

» The antisymmetric tensor vanishes.



The RR-sector

» First define the frames

1-A
0 i h h 1—...
e k1+A(S|nh tdp + cosh t cothpdt) , e

so that the metric is
ds? = npe’el n?b = diag(—1,1,..., 1) .
» In R® denote by

J» . Kahler form ,
J3 1 Real part of complex differential form of type (3,0) .



Then, there are two possibilities [KS-Thompson 14]:
> Type-lIB

Fs = 1+*f5

5 ‘I S||ws||||pe /\e /\J3
f

2 ‘l SIn(USInhpe /\e
f

F4 =

> Type-lIA

sinwsinhp e! A e A Jp .

f 1—A2

Deformation of the black hole found in [Witten 91] |.




Concluding remarks

» New integrable theories, as deformations of exact CFT WZW
models

» The action can be thought of as the effective all-loop action
for the non-Abelian (bosonized) Thirring model.

> It is possible to compute the exact S-function and anomalous
dimensions and correlation functions of primary fields using the
leading order perturbative result and symmetry and analyticity
arguments.

» Coset versions G/ H of these models can be embedded in
type-ll supergravity and represent deformations of SYM within
the AdS/CFT correspondence.

> Intresting continuations:
» Exact in both k and A B-function and anomalous dims. First
step large-N limit
» Cases with anisotropy i.e. A, # Ad,p; some are integrable.
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