Holographic Schwinger Effect and Chiral condensate in SYM Theory

Masafumi Ishihara

Tohoku U. AIMR

Collaborator: Kazuo Ghoroku Fukuoka Inst. Tech.

K.Ghoroku and M. I. JHEP 1609 (2016) 011

arXiv: 1604.05025[hep-th]

Schwinger effect

Production rate $\boldsymbol{\Gamma}$ of electron and positron pairs under the strong electric field **E**

By using **the holographic duality**, we consider **quark-antiquark** pair production rate Γ

- Γ at finite temperature phase
- Γ at chiral symmetry breaking phase

Contents

Quark-antiquark pair production rate Γ at finite temperature phase by holography

Effective quark mass and comparison with the NJL model

Quark-antiquark pair production rate Γ at chiral symmetry breaking phase by holography

Effective quark mass and comparison with the NJL model

Summary

Quark-antiquark pair production rate Γ at finite temperature phase by holography

Holographic dictionary

D7-brane embedding

 AdS_5 Black Hole $\times S^5$ metric

$$ds^{2} = \frac{r^{2}}{R^{2}} \left(-f^{2}(r)dt^{2} + \left(dx^{i} \right)^{2} \right) + \frac{1}{f^{2}(r)} \frac{R^{2}}{r^{2}} dr^{2} + R^{2} d\Omega_{5}^{2} \qquad i = 1, 2, 3$$

R: AdS curvature radius

$$f(r) = \sqrt{1 - \left(\frac{r_T}{r}\right)^4} \qquad T = \frac{r_T}{\pi R^2}$$

D7-brane action in AdS_5 Black Hole $\times S^5$

$$S_{D7} = -\tau_7 \int d^8 \xi \sqrt{-\det(g_{ab})} = -2\pi^2 \tau_7 \int d^4 x d\rho \frac{R^2 r^2}{U^4} \rho^3 \sqrt{(1+w'(\rho)^2) \left(\frac{r^4 f^2}{R^4}\right)}$$

D7-brane: $(t, x, y, z, X^4, X^5, X^6, X^7)$ $\rho^2 \equiv (X^4)^2 + (X^5)^2 + (X^6)^2 + (X^7)^2$

$$X^8 = w(\rho)$$
 $X^9 = 0$ $U^2 \equiv \rho^2 + w(\rho)^2 = \frac{r^2(1+f(r))}{2}$

Solution of D7-brane

D7-brane embedding solution $w(\rho)$

At large ho

$$w(\rho) = m_q + \frac{c}{\rho^2} + \cdots$$

Current quark mass m_q

VEV of chiral condensate $c \equiv -\langle \overline{\psi} \psi \rangle$

A. Karch and E. Katz 2002

D. Mateos, R. C. Myers, R.M. Thomson, 2007

Pair creation rate Γ

Sudden application of an electric field

$$S_{D7} = -\tau_7 \int d^8 \xi \sqrt{-\det(g_{ab} + F_{ab})} \qquad A_x = -Et$$

The production rate *r* of quark-antiquark pair

K.Hashimoto and T. Oka, '13

$$\Gamma \equiv \frac{ImL_{D7}}{2\pi^2\tau_7} \qquad L_{D7} = \int d\rho \frac{R^2r^2}{U^4} \rho^3 \sqrt{(1+w(\rho)^2)\left(\frac{r^4f^2}{R^4} - E^2\right)}$$
$$S_{D7} = -2\pi^2\tau_7 \int d^4x L_{D7}$$

 $w(\rho)$: D7-brane solution with E = 0

Γ for zero temperature ($AdS_5 \times S^5$)

At *T=0*, $AdS_5BH \times S^5$ becomes $AdS_5 \times S^5$.

D7-brane solution : $w(\rho) = const \equiv m_q$

 m_q : current quark mass

Pair production rate $(\Gamma_{T=0})$ is obtained analytically.

$$\Gamma_{T=0} = \int_0^{\rho_*} d\rho \ \rho^3 \sqrt{\frac{R^4 E^2}{r^4} - 1} = \frac{R^4 E^2}{2} \left(\frac{\pi}{4} - \theta_0 + \frac{1}{2} \sin \theta_0 \left(\cos \theta_0 - \log \left(\frac{1 + \cos \theta_0}{1 - \cos \theta_0} \right) \right) \right)$$
$$\rho_* = \sqrt{R^2 E^2 - m_q^2} \qquad r^2 = \rho^2 + m_q^2 \qquad \sin \theta_0 \equiv \frac{m_q^2}{R^2 E}$$

• Quarks with small m_q is easy to be pair created

• At
$$m_q = \frac{\sqrt{E}}{R}$$
, $\Gamma_{T=0} = 0$

$\boldsymbol{\Gamma}$ at finite temperature

from the above

Red line: Black Hole Type of D7 brane Blue line: Minkowski Type of of D7 brane

• Γ increases with $T \longrightarrow$ Effective quark mass decreases with T

 Γ increases rapidly at the temperature between Minkowski type and BH type of D7-brane with 1st order phase transition

By comparing $\Gamma \mid_{T \neq 0}$ with $\Gamma \mid_{T=0}$, we derive effective quark mass m_a^{eff} at finite temperature T.

$$\Gamma_{T\neq0}(m_q) = \Gamma_{T=0}\left(m_q^{eff}(T)\right)$$

$$\Gamma_{T=0}(m_q^{eff}) = \frac{R^4 E^2}{2} \left(\frac{\pi}{4} - \theta_{eff} + \frac{1}{2} \sin \theta_{eff} \left(\cos \theta_{eff} - \log \left(\frac{1 + \cos \theta_{eff}}{1 - \cos \theta_{eff}}\right)\right)\right)$$

$$\sin \theta_{eff} \equiv \left(\frac{m_q^{eff}}{R}\right)^2 / E$$

The temperature effect is absorbed into the effective quark mass.

Temperature dependence of m_q^{eff}

Blue line: Minkowski Type of D7 brane

Red line: BH Type of D7 brane

 m_q^{eff} decreases with temperature.

Comparing with NJL model

At high Temperature, holographic results (red dots) can be fitted with the effective mass of the NJL model at finite temperature (solid line)

$$m_q^{eff}(T) = m_q + 2G_s(T)N_c \frac{m_q^{eff}(T)}{\pi^2} \int_0^{\Lambda} dp \frac{p^2}{E_p} \tanh\left(\frac{E_p}{2T}\right)$$
He, Li, Shakin and Sun PRD 67, 114012 (2003)

 $G_S(T)N_c = g(T_c^2 - T^2)$ $T_c = 0, g = 6.5, \Lambda = 3, m_q = 1$

Quark-antiquark pair production rate Γ at chiral symmetry breaking phase by holography (zero temperature)

Quarks for the chiral symmetry breaking phase

10-dim gravity dual to the field theory at chiral symmetry breaking phase A.Kehagias and K.Sfetsos '99

$$ds^{2} = e^{\frac{\Phi}{2}} \left(\frac{r^{2}}{R^{2}} A^{2}(r) \left(-dt^{2} + \left(dx^{i} \right)^{2} \right) + \frac{R^{2}}{r^{2}} dr^{2} + R^{2} d\Omega_{5}^{2} \right)$$
$$e^{\Phi} = \left(\frac{\left(\frac{r}{r_{0}} \right)^{4} + 1}{\left(\frac{r}{r_{0}} \right)^{4} - 1} \right)^{\sqrt{3/2}} A(r) = \left(1 - \left(\frac{r_{0}}{r} \right)^{8} \right)^{\frac{1}{4}}$$

At $r_0 = 0$, the 10-dim metric becomes $AdS_5 \times S^5$

Quarks with chiral symmetry breaking

D7-brane in the 10D gravity background with finite r_0

K. Ghoroku and M.Yahiro '04

D7 action

D7-brane action

$$S_{D7} = -\tau_7 \int d^8 \xi \sqrt{-\det(g_{ab})}$$

= $-2\pi^2 \tau_7 \int d^4 x d\rho A^2 e^{\frac{\Phi}{2}} \left(\frac{R}{r}\right)^2 \rho^3 \sqrt{(1+w(\rho)^2) \left(A^4 e^{\Phi} \left(\frac{R}{r}\right)^4\right)}$

$$e^{\Phi} = \left(\frac{\left(\frac{r}{r_0}\right)^4 + 1}{\left(\frac{r}{r_0}\right)^4 - 1}\right)^{\sqrt{3/2}} \qquad A = \left(1 - \left(\frac{r_0}{r}\right)^8\right)^{\frac{1}{4}}$$

 $\rho^{2} \equiv (X^{4})^{2} + (X^{5})^{2} + (X^{6})^{2} + (X^{7})^{2} \qquad (X^{8}, X^{9}) \equiv (w(\rho), 0)$ $r^{2} = \rho^{2} + w(\rho)^{2}$

D7-brane embedding solution w(
ho)

$$w(\rho) = m_q + \frac{c}{\rho^2} + \cdots$$

Current quark mass: m_q

VEV of chiral condensate: $c \equiv -\langle \overline{\psi} \psi \rangle > 0$

chiral symmetry breaking

The value of c depends on r_0

At $r_0 = 0$, c = 0

Production rate and effective quark mass

Sudden application of an electric field

$$S_{D7} = -\tau_7 \int d^8 \xi \sqrt{-\det(g_{ab} + F_{ab})} \qquad A_x = -Et$$

The production rate *I* of quark-antiquark pair

$$\boldsymbol{\Gamma} \equiv \frac{ImL_{D7}}{2\pi^2\tau_7} \qquad L_{D7} = \int d\rho A^2 e^{\frac{\Phi}{2}} \left(\frac{R}{r}\right)^2 \rho^3 \sqrt{(1+w(\rho)^2)} \left(A^4 e^{\Phi} \left(\frac{R}{r}\right)^4 - \boldsymbol{E}^2\right)$$

 $w(\rho)$: D7-brane solution with E = 0

Production rate

Relation between Γ and c with $m_q = 1$ and E = 2

 Γ decreases with $m{c}\equiv-\langlear{m{\psi}}m{\psi}
angle$

At large *c*, effective quark mass becomes large and it becomes difficult to be pair created.

By comparing $\Gamma_{c=0}$ with $\Gamma_{c\neq0}$, we derive the effective quark mass for the chiral symmetry breaking phase.

$$\Gamma_{c\neq0}(m_q) = \Gamma_{c=0}\left(m_q^{eff}(c)\right)$$

$$\Gamma_{c=0}(m_q^{eff}) = \frac{R^4 E^2}{2} \left(\frac{\pi}{4} - \theta_{eff} + \frac{1}{2} \sin \theta_{eff} \left(\cos \theta_{eff} - \log \left(\frac{1 + \cos \theta_{eff}}{1 - \cos \theta_{eff}}\right)\right)\right)$$

$$\sin \theta_{eff} \equiv \left(\frac{m_q^{eff}}{R}\right)^2 / E$$

The effect of chiral condensate is absorbed into the effective quark mass.

Numerical results for $m_q^{eff}(c)$

The effective quark mass agrees with NJL model.

$${
m m}_{
m q}^{
m eff} = m_q - 2g_s \langle \overline{\Psi}\Psi
angle + \cdots$$
 , $g_s = 0.74/E$
 m_q : current quark mass

Summary

- We calculate quark-antiquark pair production rate Γ from the imaginary part of on-shell D7-brane Lagrangian
- For finite temperature phase, Γ increases rapidly at the temperature between Minkowski and Black Hole embedding. There is a 1st order phase transition.
- We derive the effective quark mass m_q^{eff} from Γ , and it decreases with T.
- We also calculate Γ at chiral symmetry breaking phase. Γ decreases with $c \equiv -\langle \overline{\psi} \psi \rangle$. Γ
- The effective mass m_q^{eff} increases with c and it agrees with NJL model.

$$m_q^{eff} = m_q - 2g_s \langle \overline{\Psi}\Psi \rangle + \cdots \qquad g_s = 0.74/E$$

 m_q : current quark mass