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WHY HIGGS TRIPLETS?

• Higgs triplet models have the following intriguing features:
• type-II seesaw for Majorana neutrino mass, generated by the 

VEV of the new scalar (automatically induced by EWSB);
• existence of a doubly-charged Higgs boson, leading to like-sign 

LNV and possibly even LFV processes at tree level;
➠ a link between neutrino and LHC physics

• SM-like Higgs possibly having stronger couplings with weak 
bosons;

• existence of a H±W∓Z vertex at tree level through mixing (only 
loop-induced in models such as 2HDM).

All models are wrong, but some are useful.
--- George E.P. Box
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GEORGI-MACHACEK MODEL

• The Higgs sector includes SM doublet field φ (2,1/2) and 
triplet fields χ (3,1) and ξ (3,0)

transformed under SU(2)L×SU(2)R as 
                  Φ → UL Φ UR†   and   Δ → UL Δ UR† 
with UL,R = exp(i θL,Ra Ta) and Ta being corresponding 
SU(2) generators.
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GEORGI-MACHACEK MODEL

• The Higgs sector includes SM doublet field φ (2,1/2) and 
triplet fields χ (3,1) and ξ (3,0)

transformed under SU(2)L×SU(2)R as 
                  Φ → UL Φ UR†   and   Δ → UL Δ UR† 
with UL,R = exp(i θL,Ra Ta) and Ta being corresponding 
SU(2) generators.

• Take vχ = vξ ≡ vΔ (aligned VEV).
➠ SU(2)L×SU(2)R → custodial SU(2)V 
➠ ρ = 1 at tree level

Georgi, Machacek 1985
Chanowitz, Golden 1985
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VACUUM EXPECTATION VALUE

• The VEV’s are subject to the constraint

with two mixing angle definitions seen in the literature:

• One could attribute EWSB entirely to vΔ (≃ 87 GeV) while 
keeping vφ = 0.

• Perturbativity of top Yukawa coupling demands 
vΔ ≲ 80 GeV.
➠ other constraints later

Georgi, Machacek 1985
Chanowitz, Golden 1985
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CUSTODIAL SU(2) CLASSIFICATION
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discovering entire H5 family 
crucial to verify the model



NEUTRAL HIGGS COUPLINGS

• Normalize all couplings to those for SM Higgs boson
(V = W,Z; F = quarks):

gauge-phobic

quark-phobic

Higgs F V
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and Z =

2 cos�p
3

⌘f = +1 for up-type quarks and �1 for down-type quarks and charged leptons.
independent of α; 
proportional to vΔ

group factor that makes it 
possible for the entire factor 
to be greater than 1
(mixing required)
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DECAY PATTERN

• Decay rates of new Higgs bosons generally depend on 
their mass hierarchy, vΔ (or tanθH), and mixing angle α.

• Possible mass hierarchies in the decoupling limit:
• Δm = 0 ➠ mH5 = mH3 = mH1

• Δm > 0 ➠ mH1 > mH3 > mH5

• Δm < 0 ➠ mH5 > mH3 > mH1

• General mass spectra without fixing α and consistent with 
current Higgs data and some other theoretical and 
experimental constraints have recently been worked out.  
All six mass hierarchies are possible.
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CONTOUR PLOTS FOR H5 DECAYS

• Fix mh = 125 GeV and α = 0 in these plots.
• Decay rates now depend upon vΔ, mH3 and the mass 

splitting between 5-plet and 3-plet:

solid: 50%; dashed: 90%

doubly-charged

doubly-charged singly-charged neutral
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DECAY PATTERN
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• In the case of small vΔ, both H±± and H± decay dominantly 
into leptonic final states, same as the simplest Higgs triplet 
model in phenomenology.

SIGNATURE FOR SMALL VΔ
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A general lower bound of 400 GeV from 
like-sign dilepton modes is given by both 
ATLAS and CMS. ATLAS 2012, 2014



PRODUCTION FOR LARGE VΔ

• For large vΔ, H±± couples dominantly to weak bosons.
• VBF as dominant production processes for sufficiently 

large vΔ and sufficiently large MH±±.

• Upper curves for ++ and 
lower curves for −−.
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an experimentally less explored 
scenario, and unique for GM
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IMPORTANCE OF VBF PROCESSES

  μVVGGF = 1.0 ± 0.1     κV contours          κF contours
• Enhancement (suppression) in BR(h→VV) due to κV > 1 

(< 1) is compensated by suppression (enhancement) in 
gluon fusion cross section due to κF < 1 (> 1).
➠ importance of studying the VBF processes in GM
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easier to determine H5±± mass than the other two14 TeV, 100 /fb
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CONSTRAINT FROM H5
±±

• ATLAS data of same-sign di-boson events (20.3/fb, 8-TeV) 
can be used to limit the vΔ-mH5 plane:

• Results are independent of α.

ATLAS 2014
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SEARCHES OF OTHER NEUTRAL HIGGSES
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CONSTRAINT FROM H1
0

• Constraints from VBF channels 
are stronger than those from 
GGF mechanism.

• ZZ is more constraining than 
WW when MH1≲375 GeV as 
the former has a slightly 
better experimental sensitivity.

• The γγ mode (GGF+VBF) provides 
useful bounds on vΔ in the low-mass 
regime.

• All of them are sensitive to α.

CWC and Tsumura JHEP 2015
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CONSTRAINT FROM H5
0

• Since H5 does not couple to SM quarks and charged 
leptons, it has only VBF ZZ, WW, and γγ channels.

• Constraints are generally weaker, but independent of α.
• The WW mode does not provide a useful constraint.
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NO CONSTRAINT FROM H3
0 YET

• Signal strength of H30→ff is significantly enhanced in the 
mass range between 2MW and 2Mt:

• Use these modes to search for H30 or constrain the model.

hZ threshold tt threshold
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CONSTRAINTS FROM HIGGS DATA

• Consider the tree-dominated Higgs decays into ZZ, WW, 
bb, and ττ in a chi-square fit.

• Do not include γγ to avoid uncertainties in the loop.
• Solid: 1σ contour; dashed: 2σ contour.

• In our work, we sample a few 
points in the allowed region and 
scan for viable mass spectra for 
exotic Higgs bosons.
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UNITARITY/STABILITY BOUNDS

• (Tree-level) perturbative unitarity bound

• (Tree-level) vacuum stability bound

• All λ’s can be written in terms of physical parameters.

Aoki, Kanemura 2008
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VIABLE MASS SPECTRA

• mH1 on the mH5-mH3 plane, satisfying stability and unitarity 
constraints and measurements of the S parameter and the 
Zbb coupling at 2σ level.

• Just two examples; more in our paper.
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γγ AND γZ DECAYS OF h
• Signal strength of the γγ 

mode via GGF.
• LHC 7 TeV + 8 TeV data 

• ATLAS: 1.007+0.934−1.089

• CMS: 1.32±0.38

• Signal strength of the γZ 
mode via GGF.
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DOUBLE HIGGS DECAY OF H1

• When mH1 > mh, H1→ hh becomes possible.
• BR varies a lot.
➠ affecting search scheme

• In certain cases, it can be larger than 90%!
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W-PAIR/CASCADE H±± DECAYS
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5-PLET AT ILC
• Three types of production modes at ILC:

• Pair production (PP) processes

• Vector boson associated (VBA) processes

• Vector boson fusion (VBF) processes

e+e� ! Z⇤/�⇤ ! H++
5 H��

5

e+e� ! Z⇤/�⇤ ! H+
5 H�

5

independent of vΔ 
dominant for small vΔ 
kinematically limited to √s/2

depending on vΔ 
dominant for large vΔ and mH5 
up to √s − MW,Z
involving H5±W∓Z vertex

depending on vΔ 
dominant for large vΔ and mH5 
up to ~√s
involving H5±W∓Z vertex
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VBA CROSS SECTIONS @ ILC
• Production rates for the neutral and singly-charged H5 are  

higher than the doubly-charged one, and are ~ O(1 fb) for 
a wide mass range.

CWC, Kanemura, Yagyu 2015
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INVARIANT MASS DISTRIBUTIONS

• Invariant mass distributions for subsystems of the 
e+e−→ W+W−Z process, including ISR with scale set at √s.

• Narrow peaks are due to H5± and H50, respectively.
• Precise measurement of the H5±W∓Z vertex is possible.
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SUMMARY

• With SU(2)L×SU(2)R-symmetric Higgs potential and vacuum 
alignment, GM model preserves custodial symmetry, allows a 
large vΔ, and possibly has hVV couplings stronger than SM’s.

• There is an [approximate] mass degeneracy in each of the 
3-plet, and 5-plet Higgs representations.

• For large vΔ, VBF processes are useful for searching for 
exotic GM Higgs bosons, verifying their mass spectrum, and 
extracting hVV couplings.

• Latest LHC data are employed to put constraints on the 
parameter space (e.g., vΔ vs α), and comprehensive scans 
are done to search for viable Higgs mass spectra.

• Synergy between searches of H5± and H50 at ILC and H5±± at 
LHC will make the 5-plet study more comprehensive.
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Thank You!
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