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Motivation

* Explore the connection between a many-body
quantum state and dual bulk geometry 1n the
context of AAS/CFT correspondence. We need

two 1ngredients:

* MERA (multi-scale entanglement renormalization
ansatz) --- a quantum circuit picture of many-body
ground state.

* Integral geometry --- replace the metric by the
kinematic measure of geodesics.




Outline

o Holographic Entanglement
o MREA
o Integral geometry

o Holographic entanglement renormalization



Entanglement Entropy ]

 The way to characterize the entanglementis
through the entanglement entropy (EE) of the
reduced density matrix pa = Trp|V) (V|
Sa=—-Tra(palnpa)
* The leading contribution takes the form of area
law, i.e., s.~ ) . Thisimplies that most

entanglement Is short-ranged.

* The coefficient of the sub-leading terms could
encode some information about long-ranged

entanglement,e.g., s, o= m%
= 6
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Replica trick

. . . . Y (‘) n d > n
EE is difficult to computein 54 = —g-traphli-y = —g-logtra pilu-
field theory. -
. :/)‘ J =(Z,) ] Do e~5@ 0 (O(+0,2) = d.(x)) 6 (d(=0,2) = d_(x))
In path integral onecan | / s Il
evaluate it by the so-called
replica trick. PAlgrio1_[PAlgasda - [PAlbnsdn-
The cutis understood as an
. . . a b
insertion of twist surface Yy o
operator. (In this (1+1)D, it is o / /
a point operator)
i
EE is derived from the 0t o e / /
partition functionin the 0[] il
presence of surface operator. ,// = /
o B }1 | B ; ’)




Holograpnhic EE

+ The AdS/CFT duality relates the strongly
coupled CFT to the weak AdS gravity.

+ In a sense, the CFT has a one-dim
higher AdS gravity as its effective
theory.

+ Ryu & Takayanagi (2006) proposed the
EE of dual CFT is given by the area of
minimal surface covered the entangling
region on the boundary.

Area of v4
(d+2)
4Gy
+ For spherical entangling surface, one

can show that the 1st law of
entanglement => Einstein eq

Sa =

(RT formula)
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Entanglement & Geometry

RT formula indicate a connection between
entanglement and geometry.

A more aggressive proposal: each bulk
surface is dual to a CFT state, whose
entanglement is encoded in the surface area.

This is the so-called surface/state duality
(Takayanagi et al, 2005).

This proposal bases on a more refined duality
between geometry and entanglement.



Surface/State Duality
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MERA (multi-scale Entanglement
renormalization ansatz)

MERA is a quantum circuit representation of the
many-body quantum states.

The circuit has layer structure. At each layer
(scale), we try to disentangle some local d.o.f. by
local unitary operations (LUs).

Then we coarse grain the remaining entangled
onhes to go to next layer.

In a sense, this is a RG like ansatz (unknown LUs)
of many-body wavefunction with local
entanglement removed.
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AdS/MERA

* The entanglement entropy
of an “UV” interval counts
the number of bonds on
the causal cut, which is the
boundary of the causal
cones of the interval and
its complement.

* Thisreminds the RT
formula for the
holographic EE, and
motivates AdS/MERA

MERA for CFT = 3

>
d U a | Ity. Minimal surface for Entanglement entropy for region A MERA for gapped system
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Integral Geometry
 AdS/MERA motivates one to find a more refined
picture for RT formula.

* Instead, one can evaluate the area of a bulk
surface cutting it with geodesics ending on
boundaries.

e This was first proposed by Czech et al (2015) to
evaluate CFT’s differential entropy associated
with a closed bulk surface.

n
E = Z:SI-JIJ(J k) — SEE(Tk+1 N 1))
k=1



o(y) 1 i 1 . o S
Telnd N(yNT) ex == / €x paApp = (paUpB) — (paNpB).
’ YNI'#0 JPAAPB

4

 The kinematic space measure (of geodesics) is

028 (u, v
ex(u,v) = szg'vl )d-u, A dv

* |n this case, the kinematic space is de Sitter.
* Crofton’s formula can be generalized to higher D.




Entanglement Contour

* Integral geometry picture of RT formula
resembles the MERA network.

* Besides, the kinematic space can be thought
as the entanglement contour, which is the
additive entanglement density.

* Naively, one can think the end-points of each
geodesic is associated with a Bell’s pair
contributing to the total EE.
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Entanglement RG

* Based on Surface/State duality, we can consider
the holographic picture of entanglement
renormalization:

* As we push the surface (RG running), the end-
points of the kinematic geodesic changes. This
change can be holographically thought as the LUs
of MERA:

* Short-distance pairs are removed (disentangler)
and long-distance ones are reshuffled (isometry).
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Figure 6. The long-distance entanglement is invariant under RG flow but it is reshuffled to shorter
scale. Two situations are shown here. The first is the blue geodesic which intersects both surface
states at 2 and z+dz. This implies that the entanglement contour for the intersecting pair of points
is just reshuffled but not removed. However, the entanglement entropy is reduced (and turned into
line element dz) as the left end point is dragged across the entangling surface (the intersection
points of the vertical bar with the horizontal lines). The second situation is the red-dotted geodesic
for which the intersecting points shrink to none as the surface state is pushed up from z to 2z 4 dz.
The first situation is similar to isometry operation in MERA, while the second is to disentangler.



Entanglement RGE

* An RGE of long-distance entanglement (for transl.
inv. system) can be derived from the fact:

* Kinematic space measure will not change under
the change of cutoff lines from z=z1 to z=z2 as
long as z1,z2< scale z defining the pair.

* |t then YIE|dS O(2v/32 — 22;2) = 6(0;3) .

Differential length of the surface at 2
Entropy of surface at

for surface/stateatz. 2
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Higher D story

 Though there are higher D Crofton’s formulas to
evaluate the bulk surface area, there are some

ambiguity as the kinematic object could be the ones
with co-dimension less than 2.

e Using geodesic as the kinematic objects, we can
reproduce RT formulas. However, the length of
geodesicis no longer the holographic EE in higher D.

e Despite that, the idea of entanglement contour still
holds.



Conclusion

There are intimate relation between quantum

entanglement and geometry in the holographic
context.

We show that the integral geometry can yield the
intuitive refined picture for the AdS/MERA duality.

An RGE for long-distance entanglement is obtained,
which may encode bulk dynamics.

Higher D story is more nontrivial, but the picture of
holographic entanglement contour should still hold.



