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F. Cachazo, S. He, E. Yuan proposal for tree-level S-matrix for a wide
class of massless theories in several dimensions ,

Mn =

∫
d nσ

volSL(2,C)

∏′

a
δ
( n∑
b=1
b6=a

(ka + kb)
2

σa − σb

)
In(k, ε, ε̃, σ)

≡
∫
dµn In(k, ε, ε̃, σ) ,

The integral is completely localized at sol. of scattering equations (SE):

n∑
b=1
b 6=a

(ka + kb)
2

σa − σb
= 0

CHY have made several proposals for the In(k, ε, ε̃, σ), including:
Gravity, YM, EM, EYM, DBI, NLSM YMS, φ3, φ4.
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L. Dolan and Goddard show an equivalent form for the SE,

hm =
1

m!

∑
a1,a2,...,am

k21a1a2...amσa1σa2 . . . σam = 0 ,

where k21a1a2...am = (k1 + ka2 + . . .+ kam)2.
By SL(2, C) invariance, σ1 =∞, σ2 = 1, σn = 0 and
m = 1, 2, . . . (n− 3).
Analytic solutions only up to n = 5. Our concern is too look for
underlying mathematical structures in the SE which allows us to
compute at general n.
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Sketching the program. Punch line.

By computing resultants, we eliminate all the variables but one of
the polynomial SE, getting a polynomial in a single variable,
namely σn−1. The order of this polynomial is (n− 3)! according to
Bézout theorem.

Using elimination theory, we managed to found the solutions for
the remaining variables σj , j = 3, . . . , n− 2 in terms of σn−1.
Using Stickelberger theorem in conjunction with the two items
above, we can encode the solutions of the SE in a single matrix,
namely Tσ
In general, after perform the integration over the punctures on the
sphere, the tree level S-matrix can be expressed as a rational
function. Schematically,

An =
∑
σsol

P (j1σ3, j2σ4, . . . , j(n−3)!
σ(n−3)!)

Q(j1σ3, j2σ4, · · · , j(n−3)!
σ(n−3)!)

≡ Tr
(
P(Tσn−1)

)
,
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Resultants and elimination

It is convenient to consider σn−1 as a parameter and rewrite

gm ≡
∑

ij∈{0,1}

ci3i4...in−2mσ
i3
3 σ

i4
4 · · ·σ

in−2

n−2 = 0, m = 1, 2, . . . n− 3,

where c now depends linearly on σn−1.
Computing the resultant is equivalent to impose conditions over the SE
such that all the equations have a common solution
→ polynomial in σn−1 whose should be of order (n− 3)!.
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Bézout formula

M1m = gm(σ3, . . . , σn−2),

Mim =

gm(σ̃3, . . . , σ̃i+1, σi+2, . . . , σn−2)− gm(σ̃3, . . . , σ̃i, σi+1, . . . , σn−2)

σ̃i − σi
.

det(M) ≡ B(σ, σ̃).
It can be proved that the monomials composing B(σ, σ̃)

σα3
3 · · ·σ

αn−2

n−2 σ̃
β3
3 · · · σ̃

βn−2

n−2 ,

satisfy αi < i− 2, βi < (n− 2)− i. Hence,

B ∈ S(0, 1, . . . , n− 5)⊗ S(n− 5, n− 6, . . . , 0)∗ .
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Bézout formula

B(σ, σ̃) is interpreted as a linear map from the dual vector space
S(n− 5, n− 6, . . . , 0)∗ to S(0, 1, . . . , n− 5)→ B(n−4)!×(n−4)!,

Bl m =

n−2∏
i=4

1

αi!
(∂σi)

αi

n−3∏
j=3

1

βj !

(
∂σ̃j
)βjdet(M)|(σ,σ̃)=0 .

Go back Notice each component Bl m is a determinant.
det(B) is the resultant we were looking for. Size of M is (n− 3) and
size of B is (n− 4)!, hence the det(B) is a (n− 3)× (n− 4)! = (n− 3)!
order polynomial in σn−1.
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Sylvester determinant.

A more illuminating way to compute the resultant is as follows. We
consider the map

S(0, 1, . . . , n− 5)n−3 → S(1, 2, . . . , n− 4),

Φ : (f1, f2, . . . , fn−3) 7→
n−3∑
i=1

figi.

The dimension of the linear map Φ is (n− 3)!× (n− 3)!. We introduce
the notation

A
(2)
j1j2...jn−5

=

(
c0j1j2...jn−51 c0j1j2...jn−52 · · · c0j1j2...jn−5(n−3)
c1j1j2...jn−51 c1j1j2...jn−52 · · · c1j1j2...jn−5(n−3)

)
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Sylvester and recursions.

A
(m)
j1j2...jn−m−3

=



A
(m−1)
0j1j2...jn−m−3

0 · · · 0

A
(m−1)
1j1j2...jn−m−3

A
(m−1)
0j1j2...jn−m−3

· · · 0

0 A
(m−1)
1j1j2...jn−m−3

· · · 0

...
...

. . .
...

0 0 · · · A
(m−1)
1j1j2...jn−m−3︸ ︷︷ ︸

m−1


,

m ≥ 2. The resultant of the system is given by,

detA(n−3) = 0.
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Elimination

The linear map Φ is (n− 3)!× (n− 3)! dimensional

⇒We can solve for (n− 3)! monomials as functions of the parameters
cj1j2...jn−5i i.e, as a functions of σn−1. Particularly for the subset of
monomials (σ3, σ4, . . . , σn−2).

It can be written in terms of subdeterminants of A(n−3), but we do not
have a closed general form (i.e as fancy as A(n−3) in terms of
recursions), although is straightforward case by case.
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Companion matrices.

For a given polynomial f in a single variable σi, we define yet another
matrix by the linear transformation,

Tσi : f → σif .

Go back From Stickelberger’s theorem, the roots of f are the
eigenvalues of the companion matrix Tσi .

By knowing the relation between the remaining variables σi and σn−1
we can compute the remaining companion matrices.
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How to evaluate the amplitudes

An =
∑
σsol

F(sij , σij , ε) .

This expression can always be rewritten as a rational function of
polynomials as

An =
∑
σsol

P (j1σ3, j2σ4, · · · , j(n−3)!
σ(n−3)!)

Q(j1σ3, j2σ4, · · · , j(n−3)!
σ(n−3)!)

,

we replace the solutions jσi by their corresponding companion
matrices which are written in terms of Tσn−1 . We can rewrite the
amplitude schematically as,

An = Tr
(
P̃ (Tσn−1)Q̃−1(Tσn−1)

)
≡ Tr

(
P(Tσn−1)

)
.
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Particular example, n = 6

gi = c00i + c10iσ3 + c01iσ4c11iσ3σ4, i = 1, 2, 3.

bezoutian

M6 =

c00i + c01iσ4
c10i + c11iσ4
c01i + c11iσ̃3

 .

The determinant of M is given by a polynomial in S(0, 1)⊗ S(1, 0)∗ and
the B6 in the basis {1, σ4} ⊗ {1, σ̃3} can be written as ,

B6 =

(
[00, 10, 01] [00, 10, 11]
[00, 01, 11] [10, 01, 11]

)
,

det(B6)2×2 = det(A)6×6 → Poly. of order 6 whose coefficients define
the elements of matrix companion
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Particular example, n = 6

Tσ4 =

 0 1

−s12s45
s14s25

−s12s25 − s13s35 + s14s45
s14s25

 .

Solving σ3 in terms of σ4

σ3 = −s14
s13

σ4 −
s12
s13

⇒ Tσ3 = −s14
s13

Tσ4 −
s12
s13

.
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Conclusions

We have developed a method for the evaluation of the S-matrix in
theories satisfying the SE’s in terms of the trace of a matrix.
The data needed for the construction of such a matrix, is encoded
in the determinant of another matrix, that can be computed
straightforwardly from the coefficients of the SE’s polynomials.
In developing the method we have found nice mathematical
structures hidden in the SE’s, such as recursion relations satisfied
by the resultants of such polynomials.
Those resultants, can also be written in terms of brackets, which
at the same time are the Chow form for the coordinates of
projective spaces.
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Conclusions

Many Thanks!
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