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proposal for tree-level S-matrix for a wide
class of massless theories in several dimensions ,
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The integral is completely localized at sol. of scattering equations (SE):
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CHY have made several proposals for the Z,,(k, ¢, €, o), including:
Gravity, YM, EM, EYM, DBI, NLSM YMS, ¢?, ¢*.




show an equivalent form for the SE,
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where k3, oo o = (k1 + ko + ... + ko).

By SL(2,C) invariance, o1 = o0, 02 = 1, 0, = 0 and

m =52 (n~ 8

Analytic solutions only up to n = 5. Our concern is too look for
underlying mathematical structures in the SE which allows us to
compute at general n.




© By computing resultants, we eliminate all the variables but one of
the polynomial SE, getting a polynomial in a single variable,
namely o,,_;. The order of this polynomial is (n — 3)! according to
Bézout theorem.
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© In general, after perform the integration over the punctures on the
sphere, the tree level S-matrix can be expressed as a rational
function. Schematically,
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It is convenient to consider 0,1 as a parameter and rewrite
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where ¢ now depends linearly on o,,_1.

Computing the resultant is equivalent to impose conditions over the SE
such that all the equations have a common solution

— polynomial in o,,_; whose should be of order (n — 3)!.
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det(M) = B(o,5).
It can be proved that the monomials composing B(o, &)
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satisfy a; <i—2, p; < (n—2)—i. Hence,

BeS0,1,...,n—-5)®S(n—-5n—6,...,0)".




B(o, o) is interpreted as a linear map from the dual vector space
S(n —5n—6,... ,0)* to S(O, et ' — 5) - B(n—4)!><(n—4)!s

@E8EE» Notice each component B, is a determinant.

det(B) is the resultant we were looking for. Size of M is (n — 3) and
size of Blis (n — 4)!, hence the det(B)isa (n — 3) x (n—4)} = (n — 3)!
order polynomial in o, .




A more illuminating way to compute the resultant is as follows. We
consider the map

S(0; S b« S iy — 4),
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The dimension of the linear map ® is (n — 3)! x (n — 3)!. We introduce
the notation
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m > 2. The resultant of the system is given by,

det A"=3) = .




The linear map @ is‘(n —3)! x (n — 3)! dimensional

= We can solve for (n — 3)! monomials as functions of the parameters

Cjrja...jn_si 1.€, @S @ functions of o,,_;. Particularly for the subset of
monomials (03,04, ...,0,_2).

It can be written in terms of subdeterminants of A3 but we do not
have a closed general form (i.e as fancy as A ~3) in terms of
recursions), although is straightforward case by case.




For a given polynomial f in a single variable o;, we define yet another
matrix by the linear transformation,
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@E8EE From Stickelberger’s theorem, the roots of f are the
eigenvalues of the companion matrix 75, .

By knowing the relation between the remaining variables o; and o,, 1
we can compute the remaining companion matrices.
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This expression can always be rewritten as a rational function of
polynomials as
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we replace the solutions ;o; by their corresponding companion
matrices which are written in terms of 7, _,. We can rewrite the
amplitude schematically as,
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gi =  Cooi + C10403 + C01;04C11;0304, 1=1,2,3.

€00 + C01i04
Mg = | c10i + c11i04
Co1i + €11i03
The determinant of M is given by a polynomial in S(0,1) ® S(1,0)* and
the Bg in the basis {1,04} ® {1,573} can be written as ,
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det(Bg)ax2 = det(A)gxg — Poly. of order 6 whose coefficients define
the elements of matrix ElESHEEmGD»
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Solving o3 in terms of o4

514 512 S14 512
o3 =S . =l T

S13 513 513 513




© We have developed a method for the evaluation of the S-matrix in
theories satisfying the SE’s in terms of the trace of a matrix.

» The data needed for the construction of such a matrix, is encoded
in the determinant of another matrix, that can be computed
straightforwardly from the coefficients of the SE’s polynomials.

© In developing the method we have found nice mathematical
structures hidden in the SE’s, such as recursion relations satisfied
by the resultants of such polynomials.

® Those resultants, can also be written in terms of brackets, which
at the same time are the Chow form for the coordinates of
projective spaces.
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