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0. Introduction

What is Yang-Baxter sigma model?

The recent progress on it




Yang-Baxter sigma model

A systematic way to study integrable deformations

of 2D integrable non-linear sigma models, such as

principal chiral model (PCM) and symmetric coset models.

Proposed by Klimcik in 2002, and the integrability was shown in 2008.
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The existence of Lax pair




ﬁ Yang-Baxter-deformation of PCM [Klimcik, 2002, 2008] ﬂ
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Linearop. R : g — ¢ is related to classical r-matrix via

R(X)E<T12,1®X>:Zai<bi,X> for X,a;,b; €g

where 719 = Z a; ®b; satisfies modified classical Yang-Baxter eq. (mCYBE)

— NOTE

1

An integrable deformation is specified by a classical r-matrix.

Given a classical r-matrix, a Lax pair follows automatically.




[Delduc-Magro-Vicedo, 1309.5850]
Recent Progress

[Kawaguchi-Matsumoto-KY, 1401.4855]

Yang-Baxter deformations of the AdS; x S° superstring

Classical r-matrices have been identified with a lot of gravity solutions,

including well-known examples.

EX 7-deformations of AdS; xS> (New)
v-deformations of S°>, gravity duals of NC gauge theories,

Schrodinger spacetimes, dipole backgrounds etc.

Motivated by this progress, as a generalization,

we have considered | Yang-Baxter deformations of 4D Minkowski spacetime.

[Matsumoto-Orlando-Reffert-Sakamoto-KY, 1505.04553]
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1. Yang-Baxter deformations

of Minkowski spacetime

v

T. Matsumoto, D. Orlando, S. Reffert, J. Sakamoto and K.Y., arXiv: 1505.04553



Question

Why do we study Yang-Baxter deformations of Minkowski spacetime?

FACT  There are a lot of backgrounds The quantum spectrum
for which string theories are exactly solved is obtained like in flat space

EX  Melvin backgrounds, pp-wave backgrounds, ) Deformations of
other solvable time-dependent backgrounds Minkowski spacetime

e.g. [Hashimoto-Sethi, hep-th/0208126]
[Spradlin-Takayanagi-Volovich, hep-th/0509036]

— Motives

1) There is a possibility to unify the already-known solvable backgrounds

as Yang-Baxter deformations of Minkowski spacetime.

2) By adopting the YB-deformations, new solvable backgrounds may be found.




- i : ; [Matsumoto, Orlando, Reffert,
Yang-Baxter sigma model for 4D Minkowski Sakamoto and Kv. 1505 04553]
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1 Yo (=0,...,3): abasis of su(2,2)
Projection: P(x) = qu” Tr(y, )

=== conformal embedding

L picks up vielbeins, avoiding subtlety of the degenerate Killing form.

NOTE the general form of Lax pair has not been constructed yet.




A schematic list of classical r-matrices r=a®b, [a,b]=0

m==) agbelian

(a) r = Poincaré ® Poincaré

1. abelian e.g., 7~ p; Aps, 2. non-abelian e.g., r ~ p; Ania,

(b)  r = Poincaré ® non-Poincaré

1. abelian e.g., 7 ~nia A cf, 2. non-abelian e.g., r ~ pg A cf,

(¢c)  r = non-Poincaré ® non-Poincaré

1. abelian e.g., r ~ k1 A ko, 2. non-abelian e.g., r ~ kg A d.

The generators of so(2,4): Pu> Mpws cf, k.

D, kv] = 2(npuw + 1 d) [cz,p“] =Dy, [cf, k.| =—ku,

P> Mwp) = Muw Pp = Mup Pr s [Kps Mwpl = Mpw kip — Mpp kv

(s Mpor] = Mo Mwp + Mup Mpo — Mpp Mwe — Mwo Myp -

10



Classical r-matrices and the associated backgrounds (identified so far)

r-matrix Type of Twist Background
pi Apj (4,5 =1,2,3) Melvin Shift Twist Seiberg-Witten
Po A\ Pi Melvin Shift Twist NCOS Class (a) 1
(po+pi) Apj (i # j) Null Melvin Shift Twist light-like NC
%pg A N2 Melvin Twist T—dual Melvin
Exactly | ﬁ p2 A (nog1 + n13) Melvin Null Twist Hashimoto—Sethi
Solvable %7?,12 A 13 R Melvin R Twist Spradlin—-Takayanagi—Volovich
%pl A No3 Melvin Boost Twist T—dual of Grant space
2—\1/5(190 — p3) Ania Null Melvin Twist pp-wave
_ ﬁ(d‘ —ng3) A (po — ps3) Non-Twist pp-wave Class (b) 2
Integrable %a/l\ A Do Non-Twist T—dual of dS4
%d A p1 Non-Twist T—dual of AdSy
Integrable? D J-type (mCYBE) Non-Twist g-deformation (7) Class (b) 2

* These results support the integrability of YB-deformed action.

* Would-be new backgrounds obtained (not mentioned above) w=) |ntegrable?
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2.

Deformed geometries and Lax pairs

arising from kappa-Poincare r-matrices

/

A. Borowiec, H. Kyono, J. Lukierski, J. Sakamoto and K.Y., arXiv: 1511.00404
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Kappa-Poincare r-matrix

classical r-matrix:

r=a"n,, A\p” [ a" :a constant 4D vector }
(class (a) 2)

satisfies the modified classical Yang-Baxter eq.

1
(712, 713] + |12, T23] + [r13, 73] = 5(%@“)]9’) A Npe N\ D7

There are 3 special cases: [ Kk :areal positive const. ]
1. Standard deformation a' = (+,0,0,0) : time-like vector
2. Tachyonic deformation a* = (0, %, 0,0) : space-like vector

3. Light-cone deformation at = (ﬁ,(),(), —ﬁ) : null vector
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The deformed backgrounds for 3 special cases:

1. Standard deformation
(time-like )T-duality
o —(dz®)? + dr?

ds® = ——— +1r(d9* +sin’0d¢°) T ¥
L —7°r

4D de Sitter space

2. Tachyonic deformation
(space-like) T-duality
& double Wick rotation

2 1\2
2 _ dt +(d$ ) +t2 COSh2 deQZ _thng ﬁ

d
i 1 + n?t?

4D anti de Sitter space
3. Light-cone deformation

201
cosh?(fz+)

ds® = —2dxtdx™ — (dz™)? + (dr)* + r?db?

4D time-dependent pp-wave
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A list of classical r-matrices and backgrounds

r-matrix Type of Twist Background
pi Ap; (i, =1,2,3) Melvin Shift Twist Seiberg-Witten
Po A pi Melvin Shift Twist NCOS
(po +pi) Apj (i # 7) Null Melvin Shift Twist light-like NC
1p3 Aniy Melvin Twist T—dual Melvin
ﬁ p2 A (no1 + n13) Melvin Null Twist Hashimoto—Sethi
%7?,12 A No3 R Melvin R Twist Spradlin—Takayanagi—Volovich
| b %pl A g3 Melvin Boost Twist T—dual of Grant space
Class (b) 2'2\1/5 (po — p3) Anis Null Melvin Twist pp-wave
;W(CE —no3) A (po — p3) Non-Twist pp-wave
%cf A Do Non-Twist T—dual of dSy
%d A p1 Non-Twist T—dual of AdSy
DJ-type (mCYBE) | Non-Twist g-deformation (?)

As a result, this part has been reproduced by different classical r-matrices!

(class (a) 2.)

What is the reasoning behind this coincidence?
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Lax pair for general kappa-deformations

—— Lax pair
Li = Po(Js)+ X' [P(Jz) + P'(Jz)]

[ A : spectral parameter]

—aua P NP (Jy) = P'(J4))

Here we have introduced a deformed current Jy = ! A
1F2nR,0 P

and 2 extra projections: (P is utilized in the classical action)

NOTE: the associated oo-dim. symmetry has not been clarified yet.
NOTE2: the Lax pair can be constructed for the class (a). [Kyono-Sakamoto-KY, to appear]
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3.

Summary & Discussion
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Summary

Yang-Baxter deformations of 4D Minkowski spacetime

A lot of well-known backgrounds have been reproduced.

[Matsumoto, Orlando, Reffert, Sakamoto and KY, 1505.04553]

— New results [Borowiec, Kyono, Lukierski, Sakamoto and KY, 1510.03083] —

K -Poincare r-matrix: = a* n,, A\ p”
* 3special cases mmm) (T-duals of) dS, & AdS,, a pp-wave

e Constructed Lax pairs for general k-deformations

Discussion

Infinite-dim. algebras? SUSY? New backgrounds? Integrability?
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Future perspectives:

Yang-Baxter deformations of other 4D geometries

EX Nappi-Witten model mmm)  Yang-Baxter invariance

2D Poincare alg. with a center [Kyono-KY, 1511.00404]

[ Question:  Are pp-wave backgrounds YB-invariant in general? J

If YES,

The low-energy behavior of the gauge-theory duals

of YB-deformed AdS. x S°> may be determined universally.

‘ Low-energy excited states of spin chain are universal?

19



Back up



Coset construction of Poincare AdS:

AdS, is represented by a coset: AdSs; = S0O(2,4)/50(1,4)

Here we will use the following notation:

4D gamma matrices:
U8 I

o

Yo (k=0,1,2,3), 75 = —iv0717273

1 1
Nuy = Z[’Y,uaf)/?/]n n,5 = 1[7#375]

/

— Lie algebras

Lie algebra of SO(2,4):  s0(2,4) = spang{ 7. ,75, Muv , Nus |

Lie algebra of SO(1,4):  so(1, 4) = SpanR{ MNpy > NMyps }

21
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— The group element:

1
g = exp [pua”]exp [755 log Z]

Radial direction
of AdS5

-

Then, by using the left-invariant 1-form:

one can compute the metric:

o

(Y — 2np5)

L [pu,,py} =0

Commute each other

Pu =

D | =

~

)

A=gYdg,

ds* = gyvde™Mde? = Tr(AP(A))

where the projection is defined as

1

(respecting the grading property)

3
P(z) = 2 [—'Yo Tr(vor) + > v Tr(viz) + 75 Tr(”rsfc)}

Finally, we obtain the usual expression:

ds® =

1=1

—(dz0)? + 327 (dx?)? + d2?

Z

2
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Coset construction of 4D Minkowski spacetime

g — exp [puﬂf’“b } e.g., aslice of AdS, with z = 1

The group element:

Instead of P , we will use the following projection:
1 3 Y5 -dependence
P(x) = 4 {_’YO Tr(yox) + Z Vi TI‘(%:U)] is dropped off.

This P may be seen as a map from p,, to a “"dual” basis Vu’s ) Tr(ppye) = M

is0(1,3) = spang{p,,nuw} <= is0™(1,3) = spang{v,, .}

NOTE: This step is quite important because Tr(p,p,) = 0!

Finally, the 4D Minkowski metric is reproduced as
3
ds® = Te(AP(A)) = —(dz°)? + 3 (da')?

1=1
23



A schematic picture for a classical r-matrix of the 2nd class

5D AdS

4D deformed space
4D Minkowski I

4D Minkowski spacetime is embedded The 4D slice is deformed

into 5D AdS space. by a classical r-matrix
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Example 1l: A Melvin background

1
classical r-matrix: 7 = —p3 A nqs Class (a) 1.

2

With a coordinate transformation, !l = rcosf : r? =rsind
the metric and B-field are obtained as

r2d6* + (dz°)?
1+ n?r?

ds® = —(dz")* +dr* +

Y

2
= T g Ada®

1 + n27«2

[Gibbons-Maeda, 1988]

This result nicely agrees with the known background. [Tseytlin, 1994]
[Hashimoto-Thomas, 2004]

Note: the dilaton is fixed by imposing that the 1-loop B function vanishes,

1
¢ = ) log(1 + n*r?)

25



Example 2:  T-dual of 4D de Sitter space

. . | g
classical r-matrix: r= §d A Po Class (b) 2.
Then the metric and B-field are obtained as
—(dz9)? + dr? ,
ds® = (dz’) 55— T 2 sin® 0dg? + r2dh?
1 —n*r
nr 0 oL
B = 55 dx” N dr wmm) Total derivative
1 —n*r

where we have performed a coordinate transformation

2l =rcosgsinf, z?=rsingsind, z°=rcosb

Then by performing a T-duality for the x%-direction, the metric is rewritten as

ds?* = (dr + nrdz®)? — (dz")? 4+ r*(d6* + sin?6 dp?) .

26



By performing a further coordinate transformation

1
) =t — %log(nzer — 1),

we obtain the metric of 4D de Sitter space

2

ds* = —(1 — n*r?)dt* + + 7%(dB* 4 sin*0dp?)

1 — 7’]27“2

NOTE: There exists a cosmological horizon at 7 = 1/7.

Comments:

1) The Lax pair has not been constructed for the general form of the deformed action,

but this case should be classically integrable.

2) The B-field vanishes and the RR-flux should be turned on, but it would be complex.
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