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CFTs are great

Plenty of reasons to study CFTs:
Direct physical applications,
signposts in space of QFTs,
AdS/CFT applications, ....

LOTS of recent success via conformal bootstrapping:
constructing CFTs using (1) conf. inv, (2) unitarity, (3) OPE associativity
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Details from D. Poland...



Modular bootstrapping

Interested in 2d CFTs with c>1 (string theory, phase transitions, AAS/CFT..)
Lose a lot of power of local symmetry when ¢>1; bootstrapping mostly the same

Use another principle in 2d to help better constrain theories:
modular invariance of partition function on torus

_ g = exp|2miT)
Z(r) =Tr (an_c; vy E"") i
T= (K'+if)/2n

(CFT defined on all Riemann surfaces iff 4-pt crossing symm.n sphere

AND modular invariance of Z and 1-pt fcns on torus) (Moore, Seiberg ‘8]

Modular group = 2x2 unimodular matrix of integers PSL(2,Z) :
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Modular invariance constraints

Previously:

Bounds on primary conformal dims A (€, >1) 14902 2700.1307 6562,

1511.04074]

Bounds on number of primaries,states (1312.0038, 1007.0756, 1405.5137,

upcoming] ]
Gravitational interpretation of bounds

Today:
An example bound i |
Explore space of 2d CFTs Z (—;) = Z(7]
Impose modular invariance condition T =i exp(s)
Expanding condition around fixed point
Evaluate derivatives :(ﬁi) . Z(ﬁ)‘ =0, Nodd
aﬁ f=2x

Now write down a paitition function



Bounding N - Method

Example: bounding number of states

Consider 2d CFT w/discrete spectrum described by unitary QM

For imaginary t, CFT partition fcn reduces to thermodynamic partition fcn

2(5) = Te () = 3 exp(—pEa)

n

Same differential constraints apply; applying derivatives gives constraints

Z exp(—2mE,)g,(En) =0, podd

n

9p(En) = exp(2mEy) (595)" exp(—FEy)

g=2n

Explicitly, 5 o
Ni\L) = —2m

g3(E) = —(2nE)’* + 3(2nE)’ — (21 E)



Bounding N - Results

Focus onp =1 ZE exp(—2rE,) =0

Define some energies E, =0 and £, < 0 and rearrange

p—1
Y Ejexp(—2rE;) = ) |E|exp(2r|E]).
i=p i=0
= i ¢ Tey
. 2 ] . tot ot
RHS: ; |E;| exp (2 |E;|) < ; |Eo| exp(2m|Eg|) = p oz <P ( 75 )
03 LHS: for large £ , count states between Ee~2™ and &
& N7 € exp(—2n€)
; Finally: N, <p (Etnglgd) exp (?T;:'t + E?TE)

z
Sum argument as afanctionof z=2 nE
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How good are all of these bounds?

Testing our bounds -- need to generate CFTs with ¢ > 1
and ability to control A, N: toroidal compactifications

(1) Can we come close to saturating bounds on these quantities?

By studying factorizable CFTs, was shown that lowest primary

operator is chiral, saturates bound (Witten ‘07]

Ctot

I
+24

A tighter bound...under quite an assumption

(2) Can we find examples that obey modular bootstrapping
bounds while violating this bound?



Toroidal Compactification - Introduction

Method: from toroidal compactification in string WS theory

Consider n + n (left, right) free scalar fields; ¢, =2n

Compactify theory on some lattice [, investigate spectrum

(placing on this lattice means identifying fields in various directions)

Momenta p, ., of string live on lattice w/ Lorentz. signature; require even, self-dual

O(d, d)
Theories have moduli space O(d) x O(d) O(d.d;Z)  and can be parameterized

using background fields G, B[Narain, Sarmadi, Witten ‘86]

|
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Are



Toroidal Compactification - Method

What are conformal dimensions? How do we count number of states?

Primary operators will be (derivatives of) scalars and vertex operators

Vy(z,2) = Ham X”*{z}HB”}X” 3 (z)e*X(E2)
Orbifold to remove low-dimension scalars from spectrum ... ;

Vertex operators have conformal dimensions A = k?/2

Partition fcn: Z|G,B| =

Then maximize length of a given lattice’s smallest k*; instead of p, ., use W' K"’



Toroidal Compactification - Method

Relation between p, ., and W', K.

pi w!h+G" (LK; — BjgWh)

Pk AN e (%KJ — ByjxkWH)

In terms of these variables, k? found from inner product

4 W 3 HNe—pa=gy B
wot (). o= (MO )

Then finding primary conf. dimensions means finding different lengths squared

Then finding number of states corresponds counting lattice-points



Toroidal Compactification - Results

What background fields give desired lattice?

(Ex)n=1(c, = 2):

For B = 0 (can’t build antisymmetric 1x1);

G ( 1/(2R?)

- 0

metric goes as

0
2R2 |

At self-dual radius, we maximize minimal vector length

Compare to bounds: o L Fooi L Ay =
4’ 4’
1
0.0 < 5 + 4736... =
0.0 <1.0416
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Toroidal Compactification - Method

For generic G, we have U(1) x U(1) affine worldsheet algebra
At fixed point of T-duality transformation, enhanced symmetry is SU(2) x SU(2)

Encouraged to investigate maximally enhanced symmetry points....
generalized fixed pts of T-duality group

O(d, d; Z)

When B = 0, enhanced symmetry is SU(2) x SU(2)°
More generally, semi-simple products of ADE type Lie algebras

Maximal symmetry G x G achieved by choosing G ~ Cartan matrix, B appropriately
and is orbifold point in moduli space



Toroidal Compactification - Results

(Ex) n=2
J3L L -1
(7= e (__'i 1 ) Implies k* = vi,i sothat A, =1/v/3. (577 vs .807)
1 2

Check improvement from turning on B:

2
'Elﬁ'lﬁ'l. — . ﬁ'l = E
1 2 —1 1 0 -1 =
G__E(—1 5 ) = E( s ) 0.666 < 0.8070
(.666 < 1.08333
Improvement! ... but considering SU(N) Cartan matrices gives

4
3

2 __ 2N
k - N41
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Toroidal Compactification - Results

But: exotic lattices?
In 8 dimensions, try the E8 lattice/Cartan matrix

B=0 - Min length squared = 2, giving:

A
1
Otherwise - Unlike before, fails to improve: A

1

1
1

In 24 dims, Leech lattice to the rescue?

B =0 - Min length squared gives A, = 2 (holomorphic)
Otherwise ..... ? Seems to give A, =4...

But there are issues (factorable?)

(Conjectured in 24k dims: unique self-dual lattice with L . squared = 2k + 2,

sothat A, =k +1=c/24 + 1 ... improvements? )



Toroidal Compactification - Method

C

Also interested in counting N(A); at self-dual radii, A, ., = %Z(nf + m?)
I=1

Corresponds to counting integral lattice points inside sphere of radius /24
in 4 =9¢ dimensions (.5235)

d/f2 e 1 2re’\©
N(A) & — E o SR ey
B~ @) " s vf—zm:( c )

log N, 4 & Tl” (T;) ~s 0.523059 rys.

For A ~ c, this approximation breaks (surface area grows more rapidly with
dimension than interior)

Well-studied problem, use/generalize results of [Mazo, Odlyzko, ‘90]



Toroidal Compactification - Results

Proper counting gives (.5235) lim log(max N)/n = 0.566251

=0

i U-H‘idﬂ:]ﬁf‘_ﬂt

CTheay Ao f

L

Hypercubic success...what about E8, Leech? Also success

Consider larger extremal self-dual lattices?

BTZ black hole entropy ~

lim log(max N)/n

exp(rr ctot / 6) k| ep(cn) = 2k
(17 ctot / 6 ~ 0.523598) 1 24

2 48
Seems like these lattices 3 fi
cannot be boundary theories 4 a6
for 3D gravity theories 5 120

(not enough entropy)

0.529435
0.525423
0.523599
(.523516
0.523314



Conclusion

(1) Derived bounds on conformal dimensions, numbers of states/primaries

(2) Generalized work of others to consider theories w/out sparse light
spectra

(*) Candidate CFT showing tighter bounds on dimensions are unlikely

(*) Ruling out extremal self-dual CFTs as boundary theories of 3D gravity

Thanks!



END

(extra slides)



Bounding A - Summary

Found upper bounds on conformal dims of lightest few states; thus found upper
bounds on masses of lightest states in dual gravitational theory (when it exists)

With appropriate constraints, can bound n operators; so there
exist at least n states obeying conformal dim/mass upper bounds

Found lower bound on number of states; upper bound?
Independently explored by others

[Hellerman and Schmidt-Colinet ‘11, Hartman, Keller, Stoica, ‘“14]

We provide alternate arguments--more general in some ways, weaker in others
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Bounding N - Results

Calculate some interesting limits of N7 & exp(—2n€) < p% exp (wf‘;t)

24
N <n [1 4 (Eﬁjg )E]{p (?Tt—;+2?r£)]

Crot/ 24 T it
N: € ( 2 5)
£ Mﬁ( 5 ) exp B + 27

Comparison with other work

[Hartman, Keller, and Stoica ‘14, Hellerman and Schmidt-Colinet

“11]]
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Gravity - Dictionary

AdS/CFT: equivalence of string theory on AdS background ( A < 0), CFT on
bou ndary [Maldacena ‘98] [MAGOQO, ‘00] [Witten, ‘98]

Study of asymptotically AdS, spacetimes lead to

[Brown, Henneaux ‘86]

3 =¥
C—FCZE (L:|ﬁ|_1‘m)

Match spectrum of bulk objects w/ boundary primaries Eirest) _

~ b

1

Bounds now become M, < M = Eag

£
Ctot = ﬁ

Evaluate: A7, < L 4 Dn ; in flat space limit, A7, < L

4GN L N 4GN

Bound on number of states implies bound

2 oY e 0
Gy TU\%8G, ) Sl
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Gravity - Results

Upper bound on states gives upper bound on primaries

For “pure” gravity, lng(N;t f,24) < Mg“t + O(1/Ctot)

m L £
becomes o S
ngN_QGN+O( GN)

Thus:

L o (1 L o N{?TL O L
Gy By 2 Ty U\ Ve
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